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The DCC-MIDAS Specification 

 
 

Abstract: We investigate the long-run stock-bond correlation using a novel model that combines 
the dynamic conditional correlation model with the mixed-data sampling approach. The long-run 
correlation is affected by both macro-finance variables (historical and forecasts) and the lagged 
realized correlation itself. Macro-finance variables and the lagged realized correlation are 
simultaneously significant in forecasting the long-run stock-bond correlation. The behavior of the 
long-run stock-bond correlation is very different when estimated taking the macro-finance variables 
into account. Supporting the flight-to-quality phenomenon for the total stock-bond correlation, the 
long-run correlation tends to be small/negative when the economy is weak. 

Keywords: DCC-MIDAS model; Long-run correlation; Macro-finance variables; Stock-bond 
correlation 
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1. Introduction 
Stocks and bonds are the two main asset classes. Thus, it is of importance to investigate further the 
behavior of the stock-bond correlation. Here, we introduce an innovation to the literature by 
decomposing the total stock-bond correlation into its long-run and short-run components and by 
using financial and economic variables to predict the long-run component. We use the Dynamic 
Conditional Correlation (DCC) model coupled with the Mixed-Data Sampling (MIDAS) approach. 
The new DCC-MIDAS model allows the long-run correlation to be affected by both macro-finance 
variables and the lagged realized correlation itself. 

The MIDAS regression is introduced by Anderou and Ghysels (2004) and Ghysels et al. (2006). It 
allows data from different frequencies to enter into the same model. This approach makes it 
possible to combine high-frequency returns with macro-finance data that are only observed at lower 
frequencies (such as monthly and quarterly). Engle and Rangel (2008) apply this technique to the 
GARCH framework to form the spline GARCH model. Combining the spline GARCH framework 
and the volatility decomposing approach (see Ding and Granger, 1996; Engle and Lee, 1999; 
Bauwens and Storti, 2009; Amado and Teräsvirta, 2013), Engle et al. (2012) introduce the GARCH-
MIDAS model. The model has the advantage that it allows us to directly incorporate information on 
the macroeconomic environment into the long-run component. Conrad and Loch (2012) use the 
GARCH-MIDAS framework to decompose the stock returns into short-run and long-run 
components. They examine the long-run volatility component using economic factors. Baele et al. 
(2010) and Colacito et al. (2011) apply the MIDAS technique to the DCC model of Engle (2002) to 
decompose the comovement of stocks and bonds into short-run and long-run components. Finally 
Conrad et al. (2012) extend the DCC-MIDAS model by allowing macro-finance variables to enter 
the long-run component of the correlation of crude oil and stock returns. 

The comovement of stock and bond returns may stem from several sources. Stock and bond returns 
are expected to be correlated because their future cash flows and the pertinent discount rates can be 
affected by the same economic factors. Previous research investigates the predictive power of 
various macro-finance variables for the stock-bond comovement. Viceira (2012) finds that the yield 
spread and the short rate are important determinants of the stock-bond comovement. Campbell and 
Ammer (1993) decompose the bond and stock returns into unexpected components of future cash 
flows and future discount rates and employ a vector autoregression model with asset returns and 
macro variables. They show that stock and bond returns are influenced by different factors, which 
might be the reason why stock and bond returns are not strongly correlated. 

Stock and bond returns may also be correlated since they are alternative investments. There are a 
number of empirical studies addressing the effect of money transfer between the two markets on the 
assets’ liquidity, volatility, and returns. Agnew and Balduzzi (2006) find that investors rebalance 
portfolios as responses to changes in asset prices, and that this results in a negative correlation 
between transfers in stocks and bonds, which in turn leads to a negative correlation between returns 
in these two markets. Baele et al. (2010) show that liquidity related variables hold predictive power 
for the stock-bond comovement, whereas macroeconomic variables hardly do. In general, stock and 
bond comovement is expected to be positive except in periods of “flight-to-quality”. Flight-to-
quality implies that the transfer of money from the high-risk stock market to the low-risk bond 
market at times of high uncertainty increases the bond prices relative to the stock prices, which 
makes the stock-bond correlation weaker and perhaps even negative. Fleming et al. (1998) find that 
there are volatility linkages between the stock, bond, and money markets due to cross market 
hedging. Connolly et al. (2005, 2007) investigate how the stock market uncertainty (measured by 
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the VXO volatility index) influences the stock-bond comovement and show that the comovement is 
positive (negative) following periods with low (high) uncertainty. 

In this paper, we study the impact of a large group of macro-finance variables on the long-run 
component of the stock and bond return volatility and correlation. We have selected a wide range of 
variables suggested by different studies on stock-bond co-movement. The variables include 
standard macro-finance variables (short rate, inflation), a liquidity variable (volume of S&P 500 
future contract), the equity uncertainty variable (VXO), variables reflecting the current state of the 
economy (the industrial production growth, the unemployment rate, the default spread, the producer 
confidence index (PMI), the consumer confidence index (CC), and the National Activity Index 
(NAI)), as well as the Survey of Professional Forecaster data (SPF). 

Further, different from most of the previous studies, we use the bond and stock returns at the daily 
frequency and other macro-variables at quarterly frequency within the same model using the 
MIDAS technique. We first decompose the stock and bond volatility into its short-run and long-run 
components by estimating a univariate GARCH-MIDAS model for stock and bond returns, where 
we allow for the direct impact of a macro-finance variable on the long-run component of the 
volatility. We then study the macro-finance variable’s impact on the long-run correlation within the 
DCC-MIDAS framework. For this purpose we estimate the model with a number of different 
specifications of the long-run correlation equation, i.e., a specification that only includes lagged 
realized correlations, a specification with only a macro-finance variable, and a specification with 
both lagged realized correlation and a macro-finance variable. 

Our results indicate that certain macro-finance variables including inflation, industrial production, 
the short rate, the default spread, the S&P volume, the producer confidence, and the consumer 
confidence affect the long-run stock-bond correlation. However, in order for the model to perform 
well, it is important to take the lagged realized correlation into account in the MIDAS modeling, in 
addition to the macro-finance variables. Second, we find that the long run stock-bond correlation is 
negative when the state of economic is weak, indicating the existence of the flight-to-quality 
phenomenon. We also find that survey data contain rich information for determining the bond and 
stock correlations, which suggest that the perceived stance of the economy is an important 
determinant of stock and bond correlation. 

This paper contributes to the literature in several ways. This is the first study based on the DCC-
MIDAS model which includes macro-finance variables directly in the equation for the long-run 
component of the stock-bond correlation. We use a broader range of specifications of the DCC-
MIDAS model compared to the existing literature. We use a wide range of macro-finance variables, 
including both historical data and forecasted data. By investigating the long-run stock-bond 
correlation and relating it to the economic variables, we are able to provide new empirical evidence 
on the flight-to-quality phenomenon. Finally, by using a wavelet approach, we provide further 
indications of the usefulness of smoothing technics such as the  DCC-MIDAS for predicting the 
long-run component of the stock-bond correlation. 

The remaining part of the paper is structured as follows. First, in Section 2, we lay out the 
econometric framework, including our suggested DCC-MIDAS model with macro-finance 
variables. Then, we introduce the data in Section 3. In Section 4 we discuss some opening results 
that lead up to our main empirical findings in Section 5. We conclude in Section 6. 

 

 



4 

 

2. DCC-MIDAS Stock-Bond Correlation Model 
This section outlines the econometric models used in this paper. First, we discuss the bivariate 
DCC-MIDAS model of Colacito et al. (2011). Second, we introduce the new DCC-MIDAS-XC 
model in which the long-run stock-bond correlation depends on a macro-finance variable (denoted 
by “X”) as well as the lagged realized correlation (denoted by “C”). Third, we introduce forecast 
data (denoted by “F”) into the model using the DCC-MIDAS-XCF specification. 

2.1 The DCC-MIDAS Model 

It is convenient to describe two related econometric models before we get to the DCC-MIDAS 
model itself, that is, the GARCH-MIDAS model, and the Dynamic Conditional Correlation (DCC) 
model. 

We begin with the univariate GARCH-MIDAS framework of Engle et al. (2010). Consider a return 
series on day i in a period t (e.g., month, quarter, etc.) that follows the process: 

.,...,1     ,,,, ttititti Nigr =∀+= ετµ      (1) 

)1,0(~| ,1, Ntiti −Φε  

where Nt is the number of trading days in the period t and ti ,1−Φ  is the information set up to day (i-1) 

of period t. Equation (1) expresses the variance into a short-run component defined by gi,t and a 
long-run component defined by tτ  which only changes every period t . The total conditional 

variance is defined as: 

titit g ,
2 τσ = .      (2) 

The conditional variance dynamics of the component gi,t follows a GARCH (1, 1) process, 
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where α > 0 and β ≥ 0, α + β < 1 and tτ  is defined as smoothed realized volatility in the 

MIDAS regression: 
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K is the number of lags over which we smooth the realized volatility. Following Asgharian et al. 
(2013), we modify this equation by including the economic variables along with the lagged realized 
volatility (RV) in order to study the impact of these variables on the long-run return variance: 
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where Q
ktX −  represents a macro-finance variable (measured at quarterly frequency). Note that we use 

a fixed window for the MIDAS, which means that the component tτ  used in our analysis does not 

change within a fixed period t. 

The weighting scheme used in equations (4) and (5) is described by a beta lag polynomial as 
follows: 

( )
( ) ( )

,

1

1

1

11

11

21

21

∑
=

−−

−−








 −






−
=

K

j

ww

ww

k

K

j
K

j

K
k

K
k

wϕ  Kk ,...1= .     (7) 

For w1 = 1, the weighting scheme guarantees a decaying pattern, where the rate to decay is 
determined by w2. 

In the bivariate DCC model of Engle (2002), the return vector follows the process: ( )tt HNr ,~ µ  

and the conditional covariance matrix is specified as tttt DRDH = , where Dt is a diagonal matrix 
with standard deviations of returns on the diagonal and Rt is the conditional correlation matrix of the 
standardized return residuals. The conditional volatilities for asset S and B (qSS,t+1 and qBB,t+1) follow 
regular univariate GARCH models, e.g., the GARCH(1,1) specification. These are estimated first 
and seperately. Then in a second estimation step, their conditional covariance is estimated. The 
conditional correlation is given as 2121 )()(= −−

tttt QdiagQQdiagR  and Qt (in elementary 
form) is specified as 

 )()()1(= 1,1,1,, −−− ++−− tSBtBtStSBSBt qbabaq ξξρ  (8) 

hereby giving us the conditional correlation as 
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ρ  (9) 

where tS ,ξ  and tB,ξ  are the standaized residuals from the univariate models. tSB ,ρ  is the 

unconditional correlation between the standardized residuals. 

The DCC-MIDAS model of Colacito et al. (2011) is a natural extension and combination of the 
DCC model and the GARCH-MIDAS model. The DCC-MIDAS model uses the standardized 
residuals from the univariate GARCH-MIDAS model to estimate the conditional volatilities and the 
dynamic correlation between the asset returns. The conditional covariance is now given as: 
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where kS ,ξ  and kB ,ξ  are the standardized residuals from the GARCH-MIDAS model of different 

return series. The correlations can then be computed as in eq. (8). The tSBq ,  is the short-run 

correlation between assets S and B , whereas tSB,ρ  is a slowly moving long-run correlation. 

2.2 The DCC-MIDAS-XC Model 

We provide a completely new extension of the DCC-MIDAS model to allow a macro-finance 
variable and the lagged realized correlation to affect the long-run stock-bond correlation. This is 
similar to the Asgharian et al. (2013) extenstion of the GARCH-MIDAS model. We update the 
long-run correlation in eq. (10) so that we have the DCC-MIDAS-XC model: 

 1,1,1,,, )(1= −−− ++−− tSBtBtStSBtSB bqabaq ξξρ  (13) 
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where RCSB,t is the realized correlation (measued at the quarterly frequency). Q
tX  is a macro-

finance variable  measued at the quarterly frequency. The usage of the Fisher transformation in eq. 
(14) follows Christodoulakis and Satchell (2002). 

By imposing the parameter restriction that 0=RCθ , the DCC-MIDAS-X model of Cornad et.al. 

(2012) appears. By imposing the parameter restriction that 0=xθ , another new model appears, the 

DCC-MIDAS-C model, in which only the lagged realized correlation affects the long-run stock-
bond correlation. 

2.3 The Two-Sided Extension: DCC-MIDAS-XCF 

Engle et al. (2012) suggest that the performance of the GARCH-MIDAS model can be improved by 
including the future values of the macro variables (i.e. so called two-sided filter) when anticipating 
the long term volatility. We apply the two-sided filter here. We make use of the DCC-MIDAS-XC 
model simultaneously using forecasted and observed macro-finance variables, i.e., the two-sided 
version of the model, the DCC-MIDAS-XCF model. 

Imposing RCθ  to be zero and applying the two-sided filter of Engle et al. (2012), eq. (15) can be 
modified as follows: 
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Notice that the future unknown values are replaced with forecasted data. Ideally, we would model 
the impact of the forecasted variables on the long-run dynamic correlations according to eq. (17), 
i.e., the same parameter θ  should be shared by both the historical and the forecasted data, and it 
would be estimated with a two-sided filter. In this case the optimal weighting schemes for the 
variables do not decay monotonically but are rather hump-shaped. However, the forecasters perform 
the prediction given the first release data and not the finally revised data, while 

Q
ktX −  used in the 

equation is the historical (finally revised) data. Hence, it is difficult to integrate and combine the 
historical data and the forecasted data based on the first release data with a two-sided filter.1 
Therefore, we decide to model the impact of the forecasted data with a modified two-sided filter in 
which we treat the forecasted data as an individual variable. The specification is in the following:, 

 ( ) ( ) SPF
tkt

Kk
kFX

Q
kt
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k
kXSB XwwXwwmz

lead
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|21

0

21
1

, ,,= −
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Intuitively, for the weight of the forecasted data, we would expect that the highest weight should be 
given to the most recent variables. Consequently, we should also give the highest weight to the most 
leaded lags. Therefore, we set w1=1 for the weighting scheme of the historical data, estimate w2, and 
set w2=1 for the weighting scheme of the forecasted data while estimating w1. 

2.4 Estimation Method 

Nt is set to be the number of the trading days within each quarter, the total number of lags is 
16=lagK  quarters (four years), and the total number of leads is 3=leadK . Following Engle (2002) 

and Colacito et al. (2011), we estimate the model parameters using a two-step quasi-maximum 
likelihood method. The quasi-maximum likelihood function to be maximized is 

( )( ) ( )∑∑
=

−

=

− −+−++−
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t
tttttt

T

t
tttt RRDDTL

1

'1'

1

2' loglog22log= ξξξξξξπ   (19) 

where the matrix Dt is a diagonal matrix with standard deviations of returns on the diagonal, and Rt 
is the conditional correlation matrix of the standardized return residuals. 

The model involves a large number of parameters, and it does not always converge to a global 
optimum by the conventional optimization algorithms. Therefore, we use the simulated annealing 
approach for the estimation (cf. Goffe et al. 1994). This method is very robust and seldom fails, 
even for very complicated problems. 

3. Data 
We use a combination of quarterly macro-finance variables and daily stock and bond returns. We 
consider the sample period from the first quarter of 1986 to the second quarter of 2013. The 
expectation data are obtained from the Survey of Professional Forecasters (SPF) database at the 
Federal Reserve Bank of Philadelphia. The survey is conducted by the American Statistical 
Association and the National Bureau of Economic Research. The remaining data are obtained from 
DataStream. 

                                                             
1 Conrad and Lonch (2012) allow the model to be entirely based on SPF expectation and replace the first release data 
with the corresponding real-time SPF expectations. 
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3.1 Stock and Bond Data 

The two main variables of interest are the stock and bond returns. The Realized Volatility is 
calculated based on the daily returns from the settlement prices of the S&P500 futures contracts 
traded at the CME and the 10-year Treasury note futures contract traded at the CBT. 

3.2 Macro-Finance Variables 

We have selected a wide range of variables suggested by different studies on the stock and bond 
return co-movement. 

Inflation and short rates: These two are the standard variables featured in macroeconomic models. 
They are expected to affect both the cash flow and the discount rate. However, their effects on bond 
and stock returns may differ. Because bonds have fixed nominal cash flows, inflation may generate 
different exposures between stocks and bond returns. The prominent role of inflation for predicting 
future stock-bond correlation is documented by Li (2002a). It is well known that the level of the 
interest rate drives the inflation. Therefore we include the short-term rate. Viceira (2012) documents 
that the short rate and the term spread are both key determinants of the stock-bond correlation. 

Liquidity variable: The literature on bond (Amihud & Mendelson 1991) and equity pricing 
(Amihud 2002) has increasingly stressed the importance of the liquidity effect, which may also be 
connected with the “flight-to-quality” phenomenon. Crisis periods may drive investors and traders 
from less liquid stocks into highly liquid bonds, and the resulting price-pressure effects may include 
negative stock-bond correlations. Therefore, as in Baele et al. (2010), we include the trading volume 
of S&P500 future contracts as the liquidity-related variable in the paper. 

State of economy variables: Ilmanen (2003), Guidolin and Timmermann (2006), and Aslanidis 
and Christiansen (2013) show that the general state of the macro economy provides information 
about the future stock-bond correlation. Aslanidis and Christiansen (2012) show that the short rate, 
the term spread, and the VXO volatility index are the most influential transition variables for 
determining the regime of the realized stock-bond correlation. Here we let prominent variables such 
as the industrial production growth, the unemployment rate, the default spread, the producer 
confidence index (PMI), the consumer confidence index (CC), and the National Activity Index 
(NAI) represent the state of the macro economy. 

Stock market uncertainty: Many papers (e.g., Connolly et al. 2005, 2007 and Bansal et al. 2010) have 
used the VIX-implied volatility measure as a proxy for stock market uncertainty and shown that the stock-
bond co-movements are negatively and significantly related to stock market uncertainty. As the data start in 
1986, we use the VXO index as a proxy for stock market uncertainty. 

In summary, we use the following quarterly macro-finance variables: 

• Inflation, computed as the log-difference of the seasonally adjusted CPI. 

• Industrial production growth, computed as the log-difference of the quarterly values of 
the industrial production. 

• Unemployment rate, computed as the first differences of the quarterly unemployment rates. 

• Term spread, computed as the first differences of the yield spread between 10-year 
Treasury bond and 3-month Treasury bill. 

• Short rate, computed as the first differences of yield on the 3-month US Treasury bill. 
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• Default spread, computed as the first differences of the yield spread between Moody’s Baa 
and Aaa corporate bonds. 

• S&P500 volume is the first differences of the volume of the S&P500 futures contract. 

• VXO, defined as the log-differences of the volatility index. 

• PMI, defined as the log-differences of producer confidence index. 

• CC, defined as the log-differences of consumer confidence index. 

• NAI is the value of the National Activity Index. 

3.3 Forecasted Macro-Finance Variables 

The Survey of Professional Forecasters is conducted after the release of the advance report of the 
Bureau of Economic Analysis, implying that the participants know the data for the previous quarter 
when they make their predictions. Due to data availability, we only include the forecasted inflation 
rate, unemployment rate, term spread, and short rate.2 We use median forecasts for the first three 
coming quarters. The forecasted data are denoted by 3,2,1,| =+ kX SPF

tkt . 

4. Opening Results: Stock-Bond Correlation and Smoothed Variables 
We start by investigating if smoothing of macro-finance variables strengthens the correlation 
between macro-finance variables and the stock-bond correlation. We use the wavelet approach to 
smooth the macro-finance variables and then look at the correlation of the smoothed variables and 
the future realized stock-bond correlations at different leads. 

A discrete wavelet approach divides a time-series, zt, into a set of components of different time 
frequencies. The smooth (low-frequency) components of a time series are represented by 

 ( )∑ ∫
∞
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−−
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tJ,lt

J
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tJ dtzltA ,
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, 22 νν  (20) 

and the detailed (high-frequency) parts are represented by 
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where s is the scale factor, p is the translation factor, and js  is the factor for normalization across 
the different scales. The index  j = 1, 2, …, J,  the scale where J is the maximum scale possible 
given the number of observations for zt, and l is the number of translations of the wavelet for any 
given scale. The notations tJ,l ,ν and tJ,l ,υ are the wavelet functions. The scaling functions are 

orthogonal, and the original time series can be reconstructed as a linear combination of these 
functions and the related coefficients: 

                                                             
2 The forecasted industrial production is also available. However, we exclude it as the forecasted data are quite different 
from the historical data obtained from DataStream. 
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The scale Bj,t captures information within 2j-1and 2j time intervals. To construct the smoothed series, 
we exclude all Bj,t up to the frequency of interest. For example, with quarterly data, eliminating all 
Bj,t for 3≤j  excludes all the variations that belong to frequencies higher than 23 quarters, i.e., two 
years.3 

Insert Figure 1: Wavelet Correlation 

Figure 1 shows the wavelet correlation of the realized stock-bond correlation with the non-
smoothed and smoothed values of the macro-finance variables. We use up to forth order wavelet 
smoothing. We use a random walk model (lagged realised correlation) as the benchmark for the 
comparison. Without smoothing of the macro variable, the random walk model outperforms the 
macro-finance variables and shows the strongest correlation with the future realised correlation. 
Still, the correlation is reduced as we increase the number of leads. More specifically, the 
correlation between realised bond-stock correlations at time t and t+1 is around 0.8. Between time t 
and t+4 it is around 0.6. The maximum correlation between macro-finance variables and future 
stock-bond correlation is around 0.4 when we use no smoothing, but for almost all of the macro-
finance variables the correlation increases when we we use the wavelet smoothed series. With four 
levels of wavelet smoothing (smoothing up to 16 quarters), the S&P volume has a stronger 
correlation than the lagged realized correlation itself, especially for longer forecast horizons. 

The wavelet findings motivate that smoothing technics such as the DCC-MIDAS model are useful 
in modeling the long-run component of the stock-bond correlation. An advantage of the DCC-
MIDAS over alternative smoothing technics such as the wavelet technich is that the optimal 
smoothing level is endogenousely determined by the data for the DCC-MIDAS model. 

5. DCC-MIDAS-XC Results 
In this section we describe the central empirical results.4 First, we show the univariate GARCH-
MIDAS-XC results. Second, we show the results of the DCC-MIDAS-XC model where the macro-
finance variables influence the long-run component of the stock-bond correlation. Third, we show 
the results from using forecasts for the macro-finance variables in DCC-MIDAS-XCF model to 
estimate the long-run component of the stock-bond correlation. 

5.1. Macro-Finance Determinants of Long-Run Volatility 

Table 1 shows the results from estimating the various GARCH-MIDAS-XC specifications for stock 
volatility (Panel A) and bond volatility (Panel B). 

Insert Table 1: GARCH-MIDAS-XC 

For stock volatility the best model fit is obtained for the specifications that allow for both realized 
volatility and a macro-finance variable (smallest AIC), followed by the models with only realized 
volatility which is again followed by the models that only include macro-finance variables. Most of 
the macro-finance variables are significant in explaining the long-run component of the stock 
volatility even when taking the realized volatility into account, the only exceptions being the default 
                                                             
3 See Gencay et al. (2001) for a detailed discussion on the wavelet method. 

4 Throughout we use the 10% level of significance. 
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spread and the VXO volatility index. The best fit is observed in specifications where both the 
realized volatility and the macro-finance variable are significant simultaneously. This is the case for 
the inflation rate, the PMI, and the NAI. These three macro-finance variables are all measures of 
real economic activity, i.e., they are related to the business cycle. The sign of the effect is different 
across macro-finance variables. There is a positive effect from inflation, such that the larger the 
inflation rate is, the larger the long-run stock volatility is. For the PMI and the NAI the effect is 
negative, so that the smaller the PMI or NAI is, the larger is the long-run stock volatility. The signs 
of the effects from the macro-finance variables imply that the long-run stock volatility is smaller in 
times of positive overall economic conditions (low inflation, high producer confidence, and high 
activity). 

Our results confirm the counter-cyclical behavior of stock market volatility first observed by 
Schwert (1989). The results are also consistent with Conrad and Loch (2012). They employ the 
GARCH-MIDAS framework on the US stock market and find that long-term stock volatility is 
negatively related to measures of economic activity. 

For the bond volatility the ranking of the best performing models is similar to stock volatility. It is 
preferable to include both realized volatility and macro-finance variables when describing the long-
run volatility, followed by realized volatility alone, and macro-finance variables alone. Yet, only 
few of the macro-finance variables are significant when additionally accounting for the realized 
volatility (GARCH-MIDAS-XC specification), namely only the term spread, the default spread, and 
the VXO volatility index. For these variables both the realized volatility and the variables 
themselves are simultaneously significant. So, for the bond volatility, fixed income related variables 
are of importance, which is very different for the stock volatility results. It is worth noting that the 
signs of the coefficients to the term spread and the default rate are opposite the signs they have in 
the stock volatility. 

To some extent the default spread is related to the business cycle conditions. The VXO volatility 
index also provides information about the state of the economy, in that large VXO is connected 
with high uncertainty. The effect from the variables upon the long-run bond volatility is positive, so 
that the larger the term spread, the default spread, and the VXO volatility index is, the larger is the 
long-run bond volatility. As for stocks, this implies that long-run bond volatility is large when the 
general economic conditions are weak (large term spread, default spread rate, and large VXO 
volatility). 

To our knowledge, there are no previous studies of the effect of macro-finance variables upon the 
long-run bond volatility for comparison of our results. 

Insert Figure 2: Long-Run Stock Volatility 

Insert Figure 3: Long-Run Bond Volatility 

Figures 2 and 3 show the long-run volatility for stocks and bonds for the various specifications. The 
long-run component is a lot smoother when it is estimated based on (significant) macro-finance 
variables than when it is based on lagged realized volatility. For the combination based on 
(significant) macro-finance variables and lagged realized correlation, the long-run component is still 
fairly smooth, but a little less so than with only macro-finance variables. Thus, in order to obtain 
stable long-run stock and bond volatility, it is of importance to take into account the state of the 
economy (as measured by various macro-finance variables). 

5.2. Macro-Finance Determinants of the Long-Run Correlation 
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In Table 2 we show the results where both the lagged realized correlation and one macro-finance 
variable at a time is included in the long-run stock-bond correlation equation (the DCC-MIDAS-XC 
model). In addition, we show the restricted versions with only the realized correlation (DCC-
MIDAS-C) and with only the macro-finance variables (DCC-MIDAS-X). 

Insert Table 2: DCC-MIDAS-XC 

The results from the DCC-MIDAS-X model show that the sign of the influence of the macro-
finance variables is positive and significant for inflation, industrial production, S&P trade volume, 
and NAI, and it is negative and significant for unemployment. This clearly indicates that the long-
run stock-bond correlation tends to be small/negative when the economy is weak, and it supports 
the previous literature on the existence of the flight-to-quality phenomenon. 

However, we do not find such a clear pattern for the coefficients related to these variables in the 
DCC-MIDAS-XC model. The reason that the coefficient of the macro-finance variables in the 
DCC-MIDAS-XC cannot fully reflect the relationship between the economic conditions and the 
long-term correlation is that the realized correlation itself to a large extent already captures this 
effect (the coefficient of this variable is positive and highly significant in all the cases). Therefore, 
the coefficients of the macro-finance variables in this model indicate the impact on the long-term 
correlation after considering what is already captured by the variable realized correlation in the 
model. 

The best model fit (based on AIC) is obtained in the models with both realized correlation and a 
macro-finance variable which is followed by models with the realized correlation only. Amacro-
finance variable alone gives the worst fit. This is similar to the ranking of the univariate models for 
the stock and bond volatility. However, the variables that influence the long-run stock-bond 
correlation differ from those that influence the long-run stock and bond volatility. The inflation rate, 
the industrial production, the short rate, the default spread, the S&P volume, the PMI, and consumer 
confidence are all significant variables when considered jointly with the lagged realized correlation 
for explaining the long-run stock-bond correlation. Only the inflation rate, the default spread, and 
the PMI are recurring from the long-run volatility for stocks and bonds,. The other important 
macro-finance variables for explaining the long-run stock volatility (NAI) and bond volatility (term 
spread) and VXO are not significant for the long-run stock-bond correlation. The forecasting ability 
of the inflation is consistent with Ilmanen (2003) who finds that changes in discount rates dominate 
the cash flow expectations during periods of high inflation, thereby inducing a positive stock-bond 
correlation. This is, however, in contrast with Campbell and Ammer (1993) who report that 
variations in expected inflation promote a negative correlation since an increase in inflation is bad 
news for bonds and ambiguous news for stocks. The authors also find that variation in interest rates 
promotes a positive correlation since the prices of both stocks and bonds are negatively related to 
the discount rate. 

The S&P volume is a measure of liquidity. The larger the S&P volume is, the larger the long-run 
stock-bond correlation is. So, high liquidity implies large/positive stock-bond correlation. The 
usefulness of liquidity in forecasting the long-run stock-bond correlation is in line with the findings 
in Baele et al. (2010) who show that liquidity related variables hold predictive power for the stock-
bond comovement. 

Insert Figure 4: DCC-MIDAS-C Long-Run Correlation 

Figure 4 shows the long-run component of the correlation as well as the daily correlation stemming 
from the DCC-MIDAS-C model. The long-run component is a lot less variable, i.e., smoother than 
the total correlation. 
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Insert Figure 5: DCC-MIDAS-X Daily Correlation 

Insert Figure 6: DCC-MIDAS-XC Daily Correlation 

Figures 5 and 6 show that the different specifications, i.e., the DCC-MIDAS-X and the DCC-
MIDAS-XC, provide very similar estimations of the daily correlation. So, in this regard the specific 
model choice is of little relevance. 

Insert Figure 7: Long-Run Correlation DCC-MIDAS-XC 

Figure 7 shows the long-run correlations for the various specifications with only lagged realized 
correlation, only a macro-finance variable, and the combination. Similar to the long-run stock and 
bond volatility, the long-run stock-bond correlation is smoothest when only using macro-finance 
variables and the least smooth when using only lagged realized correlation. The smoothness falls in-
between for the combination of macro-finance variables and lagged realized correlation. The 
graphical presentation of the estimated long-run correlations underscores that we get a lot of 
innovative and useful information by the new model specification that is not otherwise available. 

Insert Figure 8: Mean Absolute Errors 

Figure 8 shows the mean absolute error (MAE) for predicting the correlation up to four periods 
ahead using various models. The MAE is generally increasing with the forecast horizon. At the one-
quarter horizon the MAE is lowest when only considering the effect from the realized correlation on 
the long-run correlation, but for longer horizons the MAE is improved by considering both the 
realized correlation and the macro-finance variables. Thus, the MAE results emphasize the 
usefulness of the new DCC-MIDAS-XC model specification. Among the macro-finance variables, 
S&P volume performs best in forecasting future volatility, both alone and in combination with the 
realized correlation. 

5.3 Effect of Forecasted Macro-Finance Variables 

Table 3 shows the results from estimating the two-sided models that rely on both historical 
observations and forecasts of four macro-finance variables, the DCC-MIDAS-XCF model. 

Insert Table 3: DCC-MIDAS-XCF  

Adding the forecasted macro-finance variables improves model performance (lower AIC) compared 
to that of the models based only on observed macro-finance variables. Not surprisingly, the 
specification including all three types of information (the realized correlation, the observed macro-
finance variable, and the forecasted macro-finance variable) provides the best fit of all. 

The forecasts of the inflation rate are not significant in predicting the long-run correlation with the 
most general model, while all three types of information have explanatory power for the long-run 
correlation when we use other macroeconomic variables (unemployment, short rate, and term 
spread). The effect from the forecasted variable is positive in all cases. Yet, the effect from the 
historical observed unemployment rate turns negative when used in combination with the 
unemployment forecasts. Thus, in total, the effect from the unemployment rate observations and 
forecasts work towards cancelling each other out. The short rate and term spread have positive 
effects from both historical observations and forecasts. Thus, for these two variables the effects 
upon the long-run correlation are made stronger by adding the forecasts data. 

Insert Figure 9: Long-Run Correlation DCC-MIDAS-XCF 
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Figure 9 shows the long-run correlation for the specifications based only on lagged realized 
correlation, only macro-finance variables (historical and forecasts), and the combination. There are 
large differences in the estimated long-run correlations depending on the model specification. Thus, 
the new model specification provides additional information that could otherwise not have been 
obtained. So, this once again stresses that the new model specification is highly relevant. 

6. Conclusion 
In this paper we scrutinize the long-run stock bond correlation. We make use of the dynamic 
conditional correlation model (DCC) combined with the mixed-data sampling (MIDAS) 
methodology. We provide an extension of the existing DCC-MIDAS models by which we allow the 
long-run correlation to depend upon the lagged realized correlation itself (C) as well as a macro-
finance variable (X). In addition, extend the DCC-MIDAS-XC model to allow the corresponding 
forecasted macro-finance variable to influence the long-run stock-bond correlation. The empirical 
findings in this paper convincingly document the usefulness of the new DCC-MIDAS-XC models. 

The estimated long-run stock-bond correlation is very different depending on which variables that 
enters into its estimation. When only a macro-finance variable is used, the long-run stock bond 
correlation is very smooth, while it is fairly volatile when only the lagged realized correlation is 
used. When both the lagged realized correlation and a macro-finance variable is used, the estimated 
long-run stock-bond correlation falls in-between the smooth and variable extremes. This 
underscores that it is important to take both the lagged realized correlation as well as the macro-
finance variable into account when forecasting long-run stock-bond correlation. 

The inflation rate, the industrial production, the short rate, the default spread, the S&P volume, the 
producer confidence, and the consumer confidence are all significant in forecasting the long-run 
stock-bond correlation. Moreover, forecasts of some macro-finance variables are helpful in 
forecasting the long-run stock-bond correlation. 

The effects from the macro-finance variables upon the long-run stock-bond correlation are such that 
the long-run stock-bond correlation tends to be large when the economy is strong. This effect 
supports the conjecture of the flight-to-quality effect on the long-run correlation component. 
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Table 1. Estimation of the time varying variances by using univariate GARCH-MIDAS  

The table reports the results of the univariate GARCH-MIDAS model for estimating the time-
varying stocks and bonds. Panel A shows the results for the return variance for the stocks and Panel 
B gives the estimation results of the bond returns. The first row of each panel gives the result of the 
model that only includes the realized volatility (RV) in the MIDAS equation, the second part of the 
panel reports the results of the model which only includes different macro-finance variables in the 
MIDAS equation, and the results of the model with both RV and the macro-finance variables are 
reported in the last part of each panel. µ  is the intercept term in the mean equation for returns, α 
and β  are the parameters of the short term variance (equation 3), WRV and WX are the estimated 
weight parameters of the realized volatility and the macro-finance variables respectively, m is the 
intercept term in the long-run variance equation, and θRV and θX are the estimated parameters of the 
realized volatility and the macro-finance variables in the long-run variance (equations 4 and 6), 
respectively. The estimations are based on daily data for returns over the period from 1989 until 
2013, and quarterly data for RV and the macro-finance variables from 1986 until 2013 (we use 12 
lags in the equation for MIDAS).  *** , **  and * indicate significance at the 1%, 5% and 10% levels, 
respectively. 

Panel A. stocks returns 

 µ α β WRV WX m θ RV θ X AIC 

RV 0.008***  0.069***  0.918***  1.037***   -3.931***  37.116***   -17982 

Inflation 0.008***  0.066***  0.926***   2.069*  -3.499***   0.398**   -17973 

Industrial Prod. 0.008***  0.068***  0.921***   3.203**   -3.565***   -0.293***  -17974 

Unemployment 0.008***  0.068***  0.921***   4.436*  -3.575***   0.219***  -17974 

Term spread 0.008***  0.092***  0.898***   1.000***  -3.317***   -0.999***  -17945 

Short rate 0.008***  0.067***  0.924***   1.426***  -3.519***   0.612***  -17976 

Default rate 0.008***  0.066***  0.925***   3.915    -3.506***   -0.046    -17969 

Volume S&P 0.008***  0.068***  0.922***   1.625***  -3.554***   -0.632***  -17978 

VXO 0.008***  0.070***  0.917***   1.358***  -3.630***   0.996***  -17975 

PMI 0.008***  0.069***  0.919***   1.000***  -3.577***   -0.852***  -17978 

CC  0.008***  0.068***  0.920***   1.000***  -3.604***   -0.941***  -17977 

NAI 0.008***  0.069***  0.919***   5.071**   -3.604***   -0.272***  -17976 

Inflation 0.008***  0.069***  0.919***  1.146***  1.931**   -4.072***  51.844***  0.483***  -17994 

Industrial Prod. 0.008***  0.070***  0.918***  86.407    3.362**   -3.645***  6.560    -0.287***  -17976 

Unemployment 0.008***  0.069***  0.919***  1.001***  6.413    -3.613***  3.028    0.198*  -17975 

Term spread 0.008***  0.063***  0.925***  1.001***  8.691**   -3.664***  3.986    0.218***  -17979 

Short rate 0.008***  0.068***  0.922***  100.871    1.478***  -3.593***  5.675    0.590***  -17978 

Default rate 0.008***  0.069***  0.920***  1.000***  1.021    -3.677***  10.908    0.327    -17976 

Volume S&P 0.008***  0.070***  0.917***  6.668    1.679***  -3.735***  16.479    -0.569***  -17981 

VXO 0.008***  0.069***  0.920***  1.000***  1.808    -3.621***  3.863    0.591    -17976 

PMI 0.008***  0.072***  0.910***  1.001***  1.130***  -4.032***  40.544***  -1.027***  -17999 

CC  0.008***  0.069***  0.917***  1.000***  1.005***  -3.785***  16.176    -0.796***  -17984 

NAI 0.008***  0.073***  0.912***  1.000***  8.645*  -3.855***  26.860***  -0.182**   -17985 

 

Table 1. Estimation of the time varying variances by using univariate GARCH-MIDAS 
(continued) 

Panel B. Bond returns 
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 µ α β WRV WX m θ RV θ X AIC 

RV 0.001*  0.042***  0.936***  7.063**   -5.787***  349.905***   -27684 

Inflation 0.001    0.038***  0.952***   2.089*  -5.260***   -0.234*  -27678 

Industrial Prod. 0.001    0.038***  0.953***   1.189    -5.256***   -0.101    -27675 

Unemployment 0.001    0.038***  0.953***   1.002***  -5.263***   0.232**   -27678 

Term spread 0.001    0.037***  0.951***   1.113***  -5.296***   0.633***  -27687 

Short rate 0.001    0.038***  0.951***   1.187**   -5.270***   0.274    -27677 

Default rate 0.001*  0.047***  0.946***   2.563    -5.048***   -0.029    -27677 

Volume S&P 0.001    0.038***  0.953***   1.000***  -5.244***   0.018    -27676 

VXO 0.001*  0.039***  0.950***   1.171***  -5.284***   0.581**   -27678 

PMI 0.001    0.038***  0.952***   1.172    -5.252***   0.274    -27676 

CC  0.001    0.038***  0.953***   2.294    -5.245***   0.038    -27675 

NAI 0.001    0.038***  0.952***   1.060    -5.272***   -0.183*  -27677 

Inflation 0.001*  0.042***  0.936***  7.778**   1.724    -5.740***  316.993***  -0.093    -27685 

Industrial Prod. 0.001*  0.042***  0.936***  7.051***  6.598    -5.816***  371.899***  0.040    -27684 

Unemployment 0.001*  0.040***  0.941***  5.485**   1.000***  -5.712***  295.283***  0.070    -27684 

Term spread 0.001*  0.040***  0.937***  11.427*  1.291***  -5.664***  246.991***  0.454***  -27694 

Short rate 0.001*  0.042***  0.935***  8.009**   1.256*  -5.740***  309.064***  0.191    -27686 

Default rate 0.001*  0.042***  0.933***  5.183***  75.366    -5.870***  403.037***  0.085***  -27691 

Volume S&P 0.001*  0.042***  0.937***  5.791    141.405    -5.814***  368.820***     0.043    -27675 

VXO 0.001*  0.042***  0.936***  6.713**   1.126**   -5.743***  304.206***  0.460*  -27687 

PMI 0.001*  0.042***  0.936***  7.751**   1.501    -5.778***  343.434***  0.129    -27685 

CC  0.002*  0.042***  0.936***  6.441***  6.802    -5.808***  362.093***  -0.062    -27685 

NAI 0.001*  0.042***  0.936***  7.960**   1.027    -5.742***  314.439***  -0.057    -27684 
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Table 2. Estimation of the time varying stock-bond correlations by using DCC-MIDAS  

The table reports the results of the bivariate DCC-MIDAS model for estimating the time-varying 
correlation between stock and bond returns. The first row of the table gives the result of the DCC-
MIDAS-C model that only includes the realized correlation (RC) in the MIDAS equation, the 
second part of the table reports the results of the DCC-MIDAS-X model which only includes 
different macro-finance variables in the MIDAS equation, and the last part of the table gives the 
results of the model with both RC and the macro-finance variables, i.e. DCC-MIDAS-XC model. a 
and b are the parameters of the short term correlation (equation 13), WRC and WX are the estimated 
weight parameters of the realized correlation and the macro-finance variables respectively, m is the 
intercept term in the long-run correlation equation, and θRC and θX are the estimated parameters of 
the realized correlation and the macro-finance variables in the long-run correlation (equation 15), 
respectively. The estimations are based on daily standardized residuals from 1993 until 2013, and 
quarterly data for RC and the macro-finance variables from 1989 until 2013 (we use 16 lags in the 
equation for MIDAS).   *** , **  and * indicate significance at the 1%, 5% and 10% levels, 
respectively. 

 

 a b WRC WX m θ RC θ X AIC 

RC 0.049***  0.929***  3.233**     -0.023    1.071***    40632 

Inflation 0.037***  0.956***   1.057***  0.068     1.617***  40636 

Industrial Prod. 0.039***  0.956***   1.000*  -0.018     0.454***  40654 

Unemployment 0.039***  0.956***   1.000**   -0.003     -0.441***  40653 

Term spread 0.038***  0.959***   160.463    -0.013     0.184    40656 

Short rate 0.036***  0.960***   211.566    0.291     1.198*  40648 

Default rate 0.035***  0.962***   73.144    -0.020     0.423    40653 

Volume S&P 0.042***  0.947***   1.156***  -0.068     1.501***  40634 

VXO 0.036***  0.961***   21.170    -0.022     0.428    40654 

PMI 0.036***  0.961***   6.547    0.002     -0.480    40655 

CC  0.035***  0.963***   11.961    0.052     -0.839    40652 

NAI 0.039***  0.955***    1.216**   -0.025      0.396***  40653 

Inflation 0.056***  0.917***  4.480*  1.000***  0.023    0.855***  0.504***  40620 

Industrial Prod. 0.052***  0.920***  4.916**   32.512    -0.005    1.116***  -0.079**   40628 

Unemployment 0.049***  0.929***  3.124**   3.295    -0.025    1.050***  -0.027    40632 

Term spread 0.049***  0.929***  3.607**   105.302    -0.021    1.070***  0.058    40630 

Short rate 0.051***  0.922***  7.005**   14.947    -0.002    1.047***  0.132***  40624 

Default rate 0.052***  0.919***  7.368**   14.975    -0.012    1.030***  0.111**   40626 

Volume S&P 0.053***  0.914***  12.921**   1.317***  -0.028    0.690***  0.638***  40620 

VXO 0.053***  0.915***  10.380**   11.339    -0.008    0.981***  0.152    40628 

PMI 0.053***  0.917***  8.599**   5.359**   -0.002    1.001***  -0.173*  40628 

CC  0.051***  0.921***  8.717**   5.511**   0.003    1.066***  -0.238**   40627 

NAI 0.052***  0.922***  4.980*  103.644    -0.007    1.107***  -0.061    40630 
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Table 3. Estimation of the time varying stock-bond correlations by using two sided DCC-
MIDAS with SPF data 

The table reports the results of the two-sided bivariate DCC-MIDAS model for estimating the time-
varying correlation between stock and bond returns. The first part of the table reports the results of 
the DCC-MIDAS-XF model which includes historical and forecast data (SPF) for macro-finance 
variables in the MIDAS equation and the second part of the table gives the results of the model 
augmented by RC, i.e., DCC-MIDAS-XCF model. a and b are the parameters of the short term 
correlation equation (equation 13), WRC, WX and WFX are the estimated weight parameters of the 
realized correlation, the historical data on the macro-finance variables and the forecast data on these 
variables respectively, m is the intercept term in the long-run correlation equation, and θRC, θX and 
θFX are the estimated parameters of the realized correlation, the macro-finance variables, and the 
forecast data for the macro-finance variables in the long-run correlation (equation 17), respectively. 
The estimations are based on daily standardized residuals from 1993 until 2013, and quarterly data 
for RC and the macro-finance variables from 1989 until 2013 (we use 16 lags for historical data and 
3 leads for the SPF data in MIDAS).   *** , **  and * indicate significance at the 1%, 5% and 10% 
levels, respectively. 

 

 a b WRC WX WFX m θ RC θ X θ FX AIC 
Inflation 0.037***  0.956***   1.001***  3.601 0.077  1.319***  0.388**  40635 

Unemployment 0.033***  0.963***   8.961**  39.013 -0.160  -0.819**  1.020**  40647 

Short rate 0.036***  0.960***   10.131 3.193 0.248  -0.114 1.143 40650 

Term spread 0.028***  0.970***   2.405***  161.053 2.687***   84.857***  -129.978***  40646 

Inflation 0.056***  0.906***  10.736**  1.005***  18.859 0.007 0.872***  0.542***  -0.082 40614 

Unemployment 0.052***  0.918***  9.103**  6.261* 54.105 -0.028 0.978***  -0.130**  0.171***  40625 

Short rate 0.049***  0.927***  2.785**  12.456 3.666 0.054 1.067***  0.135**  0.207* 40619 

Term spread 0.051***  0.920***  2.781***  1.089**  37.848 -0.035 1.170***  0.219* 0.136**  40626 
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Figure 1. Correlation between the realized stock-bond correlation and the smoothed macro-
finance variables 

The figure shows the wavelet correlation between the realized stock-bond correlation and the values 
of the macro-finance variables. The macro variables are smoothed by using a wavelet approach. We 
use four different degree of smoothing. Wavelt j captures information within 2j-1and 2j time 
intervals, so with wavelet 4 all the variations which belong to a higher frequency than two years 
(eight quarters) are eliminated. We estimate the correlation between the values of the macro 
variables at time t with the realized stock-bond correlation at time t+s, where s = 1,…,4. We use a 
random walk model (lagged realised correlation) as the benchmark for the comparison. The 
correlations are based on quarterly data from 1993 until 2013. 
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Figure 2. Long-run variance of stock returns estimated by the univariate GARCH-MIDAS  

The figure plots the realized quarterly stock return variance against the estimated long-run 
component of the return variances from the GARCH-MIDAS model with three different 
specifications: the model that includes only the realized volatility (RV) in the MIDAS equation, the 
model that includes the macro-finance variables in the MIDAS equation, and finally the model with 
both RV and a macro-finance variable. The estimations are based on daily data for returns over the 
period from 1989 until 2013, and quarterly data for RV and the macro-finance variables from 1986 
until 2013 (we use 12 lags in the equation for MIDAS).   
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Figure 3. Long-run variance of bond returns estimated by the univariate GARCH MIDAS  

The figure plots the realized quarterly bond return variance against the estimated long-run 
component of the return variances from the GARCH-MIDAS model with three different 
specifications: the model that includes only the realized volatility (RV) in the MIDAS equation, the 
model that includes the macro-finance variables in the MIDAS equation, and finally the model with 
both RV and a macro-finance variable. The estimations are based on daily data for returns over the 
period from 1989 until 2013, and quarterly data for RV and the macro-finance variables from 1986 
until 2013 (we use 12 lags in the equation for MIDAS).   
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Figure 4. Short term and long-run stock-bond correlation estimated by DCC-MIDAS-C  

The figure plots the estimated short term and long-run components of the stock-bond return 
correlation from the DCC-MIDAS-C model. The model includes the realized correlation in the 
MIDAS equation for the long-run correlation. The estimations are based on daily standardized 
residuals from 1993 until 2013, and quarterly data for RC from 1989 until 2013 (we use 16 lags in 
the equation for MIDAS).     
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Figure 5. Short term stock-bond correlation estimated by DCC-MIDAS-X models with 
macro-finance variables  

The figure plots the estimated short term component of the stock-bond return correlation from the 
DCC-MIDAS-X model that only includes macro-finance variables in the MIDAS equation for the 
long-run correlation. For comparison we also plot the results from the DCC-MIDAS-C model that 
only includes the realized correlation (RC) in the MIDAS equation. The estimations are based on 
daily standardized residuals from 1993 until 2013, and quarterly data for macro-finance variables 
from 1989 until 2013 (we use 16 lags in the equation for MIDAS).     
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Figure 6. Short term stock-bond correlation estimated by DCC-MIDAS-XC models with 
realized correlation and macro-finance variables  

The figure plots the estimated short term component of the stock-bond return correlation from the 
DCC-MIDAS-XC model that includes both realized correlation and macro-finance variables in the 
MIDAS equation for the long-run correlation. For comparison we also plot the results from the 
DCC-MIDAS-C model that only includes the realized correlation (RC) in the MIDAS equation. The 
estimations are based on daily standardized residuals from 1993 until 2013, and quarterly data for 
RC and the macro-finance variables from 1989 until 2013 (we use 16 lags in the equation for 
MIDAS).    
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Figure 7. Long-run stock-bond correlation estimated by DCC-MIDAS models  

The figure plots the realized quarterly correlations against the estimated long-run component of the 
stock-bond return correlation from the DCC-MIDAS model with three different specifications: 
DCC-MIDAS-C, which includes only realized correlation (RC) in the Midas equation, DCC-
MIDAS-X, which includes the macro-finance variables in the MIDAS equation and DCC-MIDAS-
XC, which includes both RC and a macro-finance variable in the MIDAS equation. The estimations 
are based on daily standardized residuals from 1993 until 2013, and quarterly data for RC and the 
macro-finance variables from 1989 until 2013 (we use 16 lags in the equation for MIDAS).   
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Figure 8. The computed mean absolute errors (MAE) for prediction of the future quarterly 
correlations 

The figure shows the mean absolute errors for the prediction of the future relaized stock-bond 
correlation using the estimated long-run correlations from DCC-MIDAS with different 
specifications: DCC-MIDAS-X includes the macro-finance variables and DCC-MIDAS-XC 
includes both RC and the macro-finance variables. For comparison we also plot the results from the 
DCC-MIDAS-C model that only includes the realized correlation (RC) in the MIDAS equation. We 
compare the estimated correlations with the realized stock-bond correlation at time t+s, where 
s = 1,…,4. We use the forecast with a random walk model (lagged realised correlation) as the 
benchmark for the comparison. The correlations are based on quarterly data from 1993 until 2013. 
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Figure 9. Long-run stock-bond correlation estimated by DCC-MIDAS-XCF models and SPF 
data 
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The figure plots the realized quarterly correlations against the estimated long-run component of the 
stock-bond return correlation from the DCC-MIDAS model with two different specifications: DCC-
MIDAS-C, which includes only realized correlation (C) in the Midas equation and DCC-MIDAS-
XF, which includes the observed and forecasted macro-finance variables in the MIDAS equation. 
The estimations are based on daily standardized residuals from 1993 until 2013, and quarterly data 
for realized correlation and the macro-finance variables, including both historical and forecast data 
(SPF), from 1989 until 2013 (we use 16 lags for historical data and 3 leads for the SPF data in 
MIDAS).     
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