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M acr o-Finance Deter minants of the Long-Run
Stock-Bond Correlation:
The DCC-MIDAS Specification

Abstract: We investigate the long-run stock-bond correlatising a novel model that combines

the dynamic conditional correlation model with tméxed-data sampling approach. The long-run
correlation is affected by both macro-finance Malga (historical and forecasts) and the lagged
realized correlation itself. Macro-finance variableand the lagged realized correlation are
simultaneously significant in forecasting the lawog stock-bond correlation. The behavior of the

long-run stock-bond correlation is very differerttem estimated taking the macro-finance variables
into account. Supporting the flight-to-quality ploemenon for the total stock-bond correlation, the
long-run correlation tends to be small/negative ntiee economy is weak.

Keywords. DCC-MIDAS model; Long-run correlation; Macro-finee variables; Stock-bond
correlation
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1. Introduction

Stocks and bonds are the two main asset classes, iths of importance to investigate further the
behavior of the stock-bond correlation. Here, weoithuce an innovation to the literature by
decomposing the total stock-bond correlation igoléng-run and short-run components and by
using financial and economic variables to predig tong-run component. We use the Dynamic
Conditional Correlation (DCC) model coupled witle tMixed-Data Sampling (MIDAS) approach.
The new DCC-MIDAS model allows the long-run cortila to be affected by both macro-finance
variables and the lagged realized correlationfitsel

The MIDAS regression is introduced by Anderou and/€&ls (2004) and Ghysels et al. (2006). It
allows data from different frequencies to entewimthe same model. This approach makes it
possible to combine high-frequency returns with mdmance data that are only observed at lower
frequencies (such as monthly and quarterly). Eaglé Rangel (2008) apply this technique to the
GARCH framework to form the spline GARCH model. Gmning the spline GARCH framework
and the volatility decomposing approach (see Dind &ranger, 1996; Engle and Lee, 1999;
Bauwens and Storti, 2009; Amado and Terasvirta3R@Engle et al. (2012) introduce the GARCH-
MIDAS model. The model has the advantage thatoinal us to directly incorporate information on
the macroeconomic environment into the long-run ponent. Conrad and Loch (2012) use the
GARCH-MIDAS framework to decompose the stock resurimto short-run and long-run
components. They examine the long-run volatilitynponent using economic factors. Baele et al.
(2010) and Colacito et al. (2011) apply the MIDASHnique to the DCC model of Engle (2002) to
decompose the comovement of stocks and bonds hoid-in and long-run components. Finally
Conrad et al. (2012) extend the DCC-MIDAS modelalipwing macro-finance variables to enter
the long-run component of the correlation of crodeind stock returns.

The comovement of stock and bond returns may stem $everal sources. Stock and bond returns
are expected to be correlated because their foasgke flows and the pertinent discount rates can be
affected by the same economic factors. Previousareh investigates the predictive power of
various macro-finance variables for the stock-booshovement. Viceira (2012) finds that the yield
spread and the short rate are important deternsrafrthe stock-bond comovement. Campbell and
Ammer (1993) decompose the bond and stock retmtosunexpected components of future cash
flows and future discount rates and employ a veatdoregression model with asset returns and
macro variables. They show that stock and bondnstare influenced by different factors, which
might be the reason why stock and bond returns@rstrongly correlated.

Stock and bond returns may also be correlated sheeare alternative investments. There are a
number of empirical studies addressing the effeataney transfer between the two markets on the
assets’ liquidity, volatility, and returns. AgnewmdBalduzzi (2006) find that investors rebalance
portfolios as responses to changes in asset piecebthat this results in a negative correlation
between transfers in stocks and bonds, which mleads to a negative correlation between returns
in these two markets. Baele et al. (2010) show lthaidity related variables hold predictive power
for the stock-bond comovement, whereas macroecaneaniables hardly do. In general, stock and
bond comovement is expected to be positive exaepieriods of “flight-to-quality”. Flight-to-
quality implies that the transfer of money from thigh-risk stock market to the low-risk bond
market at times of high uncertainty increases tbiedbprices relative to the stock prices, which
makes the stock-bond correlation weaker and peraa@s negative. Fleming et al. (1998) find that
there are volatility linkages between the stockndyoand money markets due to cross market
hedging. Connolly et al. (2005, 2007) investigatevithe stock market uncertainty (measured by



the VXO volatility index) influences the stock-bondmovement and show that the comovement is
positive (negative) following periods with low (lguncertainty.

In this paper, we study the impact of a large gro@ipnacro-finance variables on the long-run
component of the stock and bond return volatilitg @orrelation. We have selected a wide range of
variables suggested by different studies on staridbco-movement. The variables include
standard macro-finance variables (short rate, tiofl, a liquidity variable (volume of S&P 500
future contract), the equity uncertainty variabxQ), variables reflecting the current state of the
economy (the industrial production growth, the uplyment rate, the default spread, the producer
confidence index (PMI), the consumer confidenceexndCC), and the National Activity Index
(NALI)), as well as the Survey of Professional Faster data (SPF).

Further, different from most of the previous stadiee use the bond and stock returns at the daily
frequency and other macro-variables at quarterdgdency within the same model using the
MIDAS technique. We first decompose the stock amadovolatility into its short-run and long-run
components by estimating a univariate GARCH-MIDASd®l for stock and bond returns, where
we allow for the direct impact of a macro-financarigble on the long-run component of the
volatility. We then study the macro-finance vareblimpact on the long-run correlation within the
DCC-MIDAS framework. For this purpose we estimate imodel with a number of different
specifications of the long-run correlation equatior., a specification that only includes lagged
realized correlations, a specification with onlynacro-finance variable, and a specification with
both lagged realized correlation and a macro-fiearariable.

Our results indicate that certain macro-financeaides including inflation, industrial production,
the short rate, the default spread, the S&P voluime,producer confidence, and the consumer
confidence affect the long-run stock-bond corretatiHowever, in order for the model to perform
well, it is important to take the lagged realizedrelation into account in the MIDAS modeling, in
addition to the macro-finance variables. Secondfimethat the long run stock-bond correlation is
negative when the state of economic is weak, inidigathe existence of the flight-to-quality
phenomenon. We also find that survey data contaiminformation for determining the bond and
stock correlations, which suggest that the perceisgance of the economy is an important
determinant of stock and bond correlation.

This paper contributes to the literature in severays. This is the first study based on the DCC-
MIDAS model which includes macro-finance variabtiieectly in the equation for the long-run
component of the stock-bond correlation. We usecader range of specifications of the DCC-
MIDAS model compared to the existing literature. M a wide range of macro-finance variables,
including both historical data and forecasted dd&w. investigating the long-run stock-bond
correlation and relating it to the economic varshlwe are able to provide new empirical evidence
on the flight-to-quality phenomenon. Finally, byings a wavelet approach, we provide further
indications of the usefulness of smoothing techsiash as the DCC-MIDAS for predicting the
long-run component of the stock-bond correlation.

The remaining part of the paper is structured d®vis. First, in Section 2, we lay out the
econometric framework, including our suggested D@IDAS model with macro-finance
variables. Then, we introduce the data in Sectiolm Hection 4 we discuss some opening results
that lead up to our main empirical findings in $@eH. We conclude in Section 6.



2. DCC-MIDAS Stock-Bond Correation M odel

This section outlines the econometric models usethis paper. First, we discuss the bivariate
DCC-MIDAS model of Colacito et al. (2011). Seconek introduce the new DCC-MIDAS-XC
model in which the long-run stock-bond correlatatgpends on a macro-finance variable (denoted
by “X") as well as the lagged realized correlatiglenoted by “C”). Third, we introduce forecast
data (denoted by “F”) into the model using the DRIMAS-XCF specification.

2.1 TheDCC-MIDASModel

It is convenient to describe two related econoroetibdels before we get to the DCC-MIDAS
model itself, that is, the GARCH-MIDAS model, artgktDynamic Conditional Correlation (DCC)
model.

We begin with the univaria@ ARCH-MIDAS framework of Engle et al. (2010). Consider a mnetur
series on dayin a period (e.g., month, quarter, etc.) that follows the psx

N =M+ /rtgiytgi’t, Oi =1...,N,. (1)
g P~ N(0)

whereN; is the number of trading days in the peri@hd @, _,, is the information set up to daiyX)

of periodt. Equation (1) expresses the variance into a shartzomponent defined by ; and a
long-run component defined by, which only changes every period The total conditional

variance is defined as:
Uif =00, (2)

The conditional variance dynamics of the compomggribllows a GARCH (1, 1) process,

(ri—l,t —H )

Oi =(1—a—/3’)+a' r +[),gi—1,t (3)

wherea > 0andp >0 o + f < 1 andr, is defined as smoothed realized volatility in the
MIDAS regression:

log(r,) = m+ 8 ¢, (w,,w, RV, ()

RV, = Y12 ©)

K is the number of lags over which we smooth thdizea volatility. Following Asgharian et al.
(2013), we modify this equation by including th@eomic variables along with the lagged realized
volatility (RV) in order to study the impact of these variablesh® long-run return variance:

log(r,) =m+ eli P, (Wl’WZ)RVt—k + 02i¢k (Wl’WZ)XSk (6)



where X2, represents a macro-finance variable (measuredaategly frequency). Note that we use
a fixed window for the MIDAS, which means that tt@mponentr, used in our analysis does not
change within a fixed period

The weighting scheme used in equations (4) ands(%)escribed by a beta lag polynomial as

follows:
6. (w)= K%)W;(ll_%)wll K=1.K. )
5 () ()

=1

For wy = 1, the weighting scheme guarantees a decayitigrpawhere the rate to decay is
determined byw,.

In the bivariateDCC model of Engle (2002), the return vector follows fprocessr, ~ N(,U, Ht)
and the conditional covariance matrix is specifesdH, = D,RD,, whereD; is a diagonal matrix

with standard deviations of returns on the diagamalR; is the conditional correlation matrix of the
standardized return residuals. The conditionaltiltias for asse andB (gsst+1 andggg+1) follow
regular univariate GARCH models, e.g., the GARCH)Epecification. These are estimated first
and seperately. Then in a second estimation shejr, conditional covariance is estimated. The
conditional correlation is given aR, = diag (Q,) ¥* Q, diag (Q,) ¥? andQ (in elementary

form) is specified as

Ot = P (l-a=-b)+a(s,1$p-1) + D(As 1-1) (8)
hereby giving us the conditional correlation as
qSS,l

Pt = T——— (9)
> V qSS,quBB,t

where &, and ¢, are the standaized residuals from the univariadets. pg, is the
unconditional correlation between the standardiesitiuals.

The DCC-MIDAS model of Colacito et al. (2011) is a natural esten and combination of the
DCC model and the GARCH-MIDAS model. The DCC-MIDASodel uses the standardized

residuals from the univariate GARCH-MIDAS modelestimate the conditional volatilities and the
dynamic correlation between the asset returns. dhditonal covariance is now given as:

Je = Pe(l-a-b)+ads, {g *bdg (10)
K
P = D (W )Co,y (11)
k=
t
D &b
Cary = -2 (12)

Ji%diﬁk

k=t-N k=t-N



where ¢, and &, are the standardized residuals from the GARCH-M#Dodel of different
return series. The correlations can then be condpagin eq. (8). Theayy, is the short-run
correlation between ass&@aindB , whereaspg, is a slowly moving long-run correlation.

2.2 The DCC-MIDAS-XC Model

We provide a completely new extension of the DCMKE model to allow a macro-finance
variable and the lagged realized correlation tedfthe long-run stock-bond correlation. This is
similar to the Asgharian et al. (2013) extenstidrntte GARCH-MIDAS model. We update the
long-run correlation in eq. (10) so that we haweRICC-M IDAS-XC model:

Jgt = Ps. (1-a-b)+ afs,t—lfB,t—l + bq S8 t-1 (13)
_exp(2zg,) -1

(14)

| exp(2zg,) +1
K K
g, = Mg + HRCZ¢k (W11 WZ)RCSB,t—k + 6y z¢k (W1’ WZ)XtQ—k (15)
k=1 k=1
Nt
ZESJEBJ
RC. =——i®t (16)

>,

where RCs; is the realized correlation (measued at the quwgrfeequency). x e is a macro-
finance variable measued at the quarterly frequehiee usage of the Fisher transformation in eq.
(14) follows Christodoulakis and Satchell (2002).

By imposing the parameter restriction th@f =0, the DCC-MIDAS-X model of Cornad et.al.
(2012) appears. By imposing the parameter resindtiatg, = 0, another new model appears, the

DCC-MIDAS-C model, in which only the lagged realized correlataffects the long-run stock-
bond correlation.

2.3 The Two-Sided Extension: DCC-MIDAS-XCF

Engle et al. (2012) suggest that the performandkeofGARCH-MIDAS model can be improved by
including the future values of the macro varialfles so called two-sided filter) when anticipating
the long term volatility. We apply the two-sidettdir here. We make use of the DCC-MIDAS-XC
model simultaneously using forecasted and obsemvadro-finance variables, i.e., the two-sided
version of the model, tHeCC-MIDAS-XCF model.

Imposing &, to be zero and applying the two-sided filter ofgienet al. (2012), eq. (15) can be
modified as follows:

I'<Iag 0
Iy, = m+5xz¢k(W1’W2)XSk +6y, Z¢k(W1’W2)XET<'|:t .
e} K=—Kieeq a7



Notice that the future unknown values are replagghl forecasted data. Ideally, we would model
the impact of the forecasted variables on the lamgdynamic correlations according to eq. (17),
i.e., the same parametér should be shared by both the historical and thectsted data, and it
would be estimated with a two-sided filter. In tliase the optimal weighting schemes for the
variables do not decay monotonically but are rathenp-shaped. However, the forecasters perform
the prediction given the first release data andthetfinally revised data, whileX 2, used in the
equation is the historical (finally revised) datéence, it is difficult to integrate and combine the
historical data and the forecasted data based erfit$t release data with a two-sided filter.
Therefore, we decide to model the impact of thedasted data with a modified two-sided filter in
which we treat the forecasted data as an individaaable. The specification is in the following:,

K\ag 0
Zg, =M+ 6, B, (W, W,)X2 + 0 D&, (v, W, )X T (18)
k=1 k=-Kjeaq

Intuitively, for the weight of the forecasted datag would expect that the highest weight should be
given to the most recent variables. Consequentyshould also give the highest weight to the most
leaded lags. Therefore, we sat1 for the weighting scheme of the historical dae&timaten,, and
setw,=1 for the weighting scheme of the forecasted déiiée estimating w.

2.4 Estimation M ethod

N; is set to be the number of the trading days wittch quarter, the total number of lags is
K., =16 quarters (four years), and the total number ofideia K, = 3. Following Engle (2002)

and Colacito et al. (2011), we estimate the modehmeters using a two-step quasi-maximum
likelihood method. The quasi-maximum likelihood ¢tion to be maximized is

lead

T T
L ==Y (Tlog(27) + 2log|D,| + &D;%¢, ) - Y (logR | + ERE, - &¢,) (19)
t=1 t=1
where the matridD; is a diagonal matrix with standard deviations afimes on the diagonal, arr{
is the conditional correlation matrix of the starized return residuals.

The model involves a large number of parameterd, ialoes not always converge to a global
optimum by the conventional optimization algorithrii$ierefore, we use the simulated annealing
approach for the estimation (cf. Goffe et al. 199®)is method is very robust and seldom falils,
even for very complicated problems.

3. Data

We use a combination of quarterly macro-financeaides and daily stock and bond returns. We
consider the sample period from the first quarterl@86 to the second quarter of 2013. The
expectation data are obtained from the Survey ofeBsional Forecasters (SPF) database at the
Federal Reserve Bank of Philadelphia. The survegosducted by the American Statistical
Association and the National Bureau of EconomiceResh. The remaining data are obtained from
DataStream.

! Conrad and Lonch (2012) allow the model to berehtibased on SPF expectation and replace theréifsase data
with the corresponding real-time SPF expectations.



3.1 Stock and Bond Data

The two main variables of interest are the stocll Aond returns. The Realized Volatility is
calculated based on the daily returns from thdesaént prices of the S&P500 futures contracts
traded at the CME and the 10-year Treasury notedatcontract traded at the CBT.

3.2 Macro-Finance Variables

We have selected a wide range of variables sughéstalifferent studies on the stock and bond
return co-movement.

Inflation and short rates: These two are the standard variables featurecacr@economic models.
They are expected to affect both the cash flowthadliscount rate. However, their effects on bond
and stock returns may differ. Because bonds haeel fnominal cash flows, inflation may generate
different exposures between stocks and bond retiitves prominent role of inflation for predicting
future stock-bond correlation is documented by2002a). It is well known that the level of the
interest rate drives the inflation. Therefore welude the short-term rate. Viceira (2012) documents
that the short rate and the term spread are bgtldd&rminants of the stock-bond correlation.

Liquidity variable: The literature on bond (Amihud & Mendelson 19914 aequity pricing
(Amihud 2002) has increasingly stressed the impesaof the liquidity effect, which may also be
connected with the “flight-to-quality” phenomend@xisis periods may drive investors and traders
from less liquid stocks into highly liquid bonds\dathe resulting price-pressure effects may include
negative stock-bond correlations. Therefore, @&aele et al. (2010), we include the trading volume
of S&P500 future contracts as the liquidity-relatediable in the paper.

State of economy variables. lImanen (2003), Guidolin and Timmermann (2006), &sdanidis
and Christiansen (2013) show that the general statbe macro economy provides information
about the future stock-bond correlation. Aslanatsl Christiansen (2012) show that the short rate,
the term spread, and the VXO volatility index ahe tmost influential transition variables for
determining the regime of the realized stock-bomdetation. Here we let prominent variables such
as the industrial production growth, the unemplogtneate, the default spread, the producer
confidence index (PMI), the consumer confidenceein@dCC), and the National Activity Index
(NAI) represent the state of the macro economy.

Stock market uncertainty: Many papers (e.g., Connolly et al. 2005, 2007 aads@l et al. 2010) have
used the VIX-implied volatility measure as a prdry stock market uncertainty and shown that theksto
bond co-movements are negatively and significarlgted to stock market uncertainty. As the dedat &b
1986, we use the VXO index as a proxy for stockkeianncertainty.

In summary, we use the following quarterly macrwmfice variables:
* Inflation, computed as the log-difference of the seasomaljysted CPI.

* Industrial production growth, computed as the log-difference of the quarterlyuealof
the industrial production.

« Unemployment rate, computed as the first differences of the quartenemployment rates.

e Term spread, computed as the first differences of the yieldead between 10-year
Treasury bond and 3-month Treasury bill.

» Short rate, computed as the first differences of yield on3hmonth US Treasury bill.



» Default spread, computed as the first differences of the yielceag between Moody’s Baa
and Aaa corporate bonds.

» S&P500 volume s the first differences of the volume of the S&B30tures contract.
* VXO, defined as the log-differences of the volatilitgdex.

« PMI, defined as the log-differences of producer canfak index.

* CC, defined as the log-differences of consumer cemoe index.

* NAI is the value of the National Activity Index.

3.3 Forecasted M acro-Finance Variables

The Survey of Professional Forecasters is conduafted the release of the advance report of the
Bureau of Economic Analysis, implying that the paptnts know the data for the previous quarter
when they make their predictions. Due to data afdity, we only include the forecasted inflation
rate, unemployment rate, term spread, and sha@f Mte use median forecasts for the first three
coming quarters. The forecasted data are denoted¥jy k = 1,23.

4. Opening Results: Stock-Bond Correlation and Smoothed Variables

We start by investigating if smoothing of macroafiite variables strengthens the correlation
between macro-finance variables and the stock-lmamcelation. We use the wavelet approach to
smooth the macro-finance variables and then lodgketorrelation of the smoothed variables and
the future realized stock-bond correlations atedéht leads.

A discrete wavelet approach divides a time-serdgdnto a set of components of different time
frequencies. The smooth (low-frequency) componehtstime series are represented by

©

A, = 22_%1/(2‘% ~1)[z vy, ot (20)
|

—00

and the detailed (high-frequency) parts are reptesgeby

B, :le\/%u(t_lpsj sztuj,l,t dt, (21)

S]

wheres is the scale factop is the translation factor, arr(zlls_j is the factor for normalization across
the different scales. The index= 1, 2, ...,J, the scale wheré is the maximum scale possible
given the number of observations fgrandl! is the number of translations of the wavelet foy a

given scale. The notations,,, and v,,, are the wavelet functions. The scaling functions ar

orthogonal, and the original time series can benstucted as a linear combination of these
functions and the related coefficients:

2 The forecasted industrial production is also amé. However, we exclude it as the forecasted al@tayuite different
from the historical data obtained from DataStream.



J
Z=A+YB,. (22)
i=1

The scaleB;; captures information within'"and 2 time intervals. To construct the smoothed series,
we exclude alB;; up to the frequency of interest. For example, wjtiarterly data, eliminating all
B;: for j <3 excludes all the variations that belong to freaies higher than®quarters, i.e., two

3
years:

InsertFigure 1: Wavelet Correlation

Figure 1 shows the wavelet correlation of the meali stock-bond correlation with the non-
smoothed and smoothed values of the macro-finandables. We use up to forth order wavelet
smoothing. We use a random walk model (lagged sealcorrelation) as the benchmark for the
comparison. Without smoothing of the macro varialie random walk model outperforms the
macro-finance variables and shows the strongeselation with the future realised correlation.
Still, the correlation is reduced as we increase tlumber of leads. More specifically, the
correlation between realised bond-stock correlatantimet andt+1 is around 0.8. Between tinhe
andt+4 it is around 0.6. The maximum correlation betwaeacro-finance variables and future
stock-bond correlation is around 0.4 when we usemoothing, but for almost all of the macro-
finance variables the correlation increases whenveeise the wavelet smoothed series. With four
levels of wavelet smoothing (smoothing up to 16 rtpra), the S&P volume has a stronger
correlation than the lagged realized correlatisalft especially for longer forecast horizons.

The wavelet findings motivate that smoothing techréuch as the DCC-MIDAS model are useful
in modeling the long-run component of the stock¢aorrelation. An advantage of the DCC-
MIDAS over alternative smoothing technics such ks wavelet technich is that the optimal
smoothing level is endogenousely determined byl#tia for the DCC-MIDAS model.

5. DCC-MIDAS-XC Results

In this section we describe the central empiriesiuits’ First, we show the univariate GARCH-
MIDAS-XC results. Second, we show the results ef IICC-MIDAS-XC model where the macro-
finance variables influence the long-run comporarhe stock-bond correlation. Third, we show
the results from using forecasts for the macrorggavariables in DCC-MIDAS-XCF model to
estimate the long-run component of the stock-bance@ation.

5.1. Macr o-Finance Deter minants of Long-Run Volatility

Table 1 shows the results from estimating the wariBARCH-MIDAS-XC specifications for stock
volatility (Panel A) and bond volatility (Panel B).

InsertTable 1: GARCH-MIDAS-XC

For stock volatility the best model fit is obtainfmt the specifications that allow for both reatize
volatility and a macro-finance variable (smallesCA followed by the models with only realized
volatility which is again followed by the modelsationly include macro-finance variables. Most of
the macro-finance variables are significant in akphg the long-run component of the stock
volatility even when taking the realized volatilitto account, the only exceptions being the defaul

% See Gencay et al. (2001) for a detailed discussioihe wavelet method.

* Throughout we use the 10% level of significance.
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spread and the VXO volatility index. The best fitabserved in specifications where both the
realized volatility and the macro-finance variaéte significant simultaneously. This is the case fo
the inflation rate, the PMI, and the NAI. Theseethmacro-finance variables are all measures of
real economic activity, i.e., they are relatedhe business cycle. The sign of the effect is diffier
across macro-finance variables. There is a poséffect from inflation, such that the larger the
inflation rate is, the larger the long-run stocKatibity is. For the PMI and the NAI the effect is
negative, so that the smaller the PMI or NAI i€ tharger is the long-run stock volatility. The sgn
of the effects from the macro-finance variableslynpat the long-run stock volatility is smaller in
times of positive overall economic conditions (linflation, high producer confidence, and high
activity).

Our results confirm the counter-cyclical behavidr sbock market volatility first observed by
Schwert (1989). The results are also consistertt ®tnrad and Loch (2012). They employ the
GARCH-MIDAS framework on the US stock market anddfithat long-term stock volatility is
negatively related to measures of economic activity

For the bond volatility the ranking of the bestfpening models is similar to stock volatility. I i
preferable to include both realized volatility amdcro-finance variables when describing the long-
run volatility, followed by realized volatility alee, and macro-finance variables alone. Yet, only
few of the macro-finance variables are significauiten additionally accounting for the realized
volatility (GARCH-MIDAS-XC specification), namelyrdy the term spread, the default spread, and
the VXO volatility index. For these variables bothe realized volatility and the variables
themselves are simultaneously significant. Sottierbond volatility, fixed income related variables
are of importance, which is very different for tteck volatility results. It is worth noting thdtet
signs of the coefficients to the term spread amddi#fault rate are opposite the signs they have in
the stock volatility.

To some extent the default spread is related tdtieness cycle conditions. The VXO volatility
index also provides information about the stateéhef economy, in that large VXO is connected
with high uncertainty. The effect from the variablgon the long-run bond volatility is positive, so
that the larger the term spread, the default spraad the VXO volatility index is, the larger isth
long-run bond volatility. As for stocks, this ime$ that long-run bond volatility is large when the
general economic conditions are weak (large termeash) default spread rate, and large VXO
volatility).

To our knowledge, there are no previous studiethefeffect of macro-finance variables upon the
long-run bond volatility for comparison of our résu

InsertFigure 2: Long-Run Stock Volatility
InsertFigure 3: Long-Run Bond Volatility

Figures 2 and 3 show the long-run volatility foscks and bonds for the various specifications. The
long-run component is a lot smoother when it isnested based on (significant) macro-finance
variables than when it is based on lagged realiz@dtility. For the combination based on
(significant) macro-finance variables and laggealized correlation, the long-run component is still
fairly smooth, but a little less so than with omhacro-finance variables. Thus, in order to obtain
stable long-run stock and bond volatility, it is iofportance to take into account the state of the
economy (as measured by various macro-financeblaga

5.2. Macr o-Finance Deter minants of the Long-Run Correlation
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In Table 2 we show the results where both the ldgegalized correlation and one macro-finance
variable at a time is included in the long-run &tbond correlation equation (the DCC-MIDAS-XC
model). In addition, we show the restricted versiamth only the realized correlation (DCC-
MIDAS-C) and with only the macro-finance variab{@CC-MIDAS-X).

InsertTable 2: DCC-MIDAS-XC

The results from the DCC-MIDAS-X model show thae teign of the influence of the macro-
finance variables is positive and significant foflation, industrial production, S&P trade volume,
and NAI, and it is negative and significant for m@oyment. This clearly indicates that the long-
run stock-bond correlation tends to be small/nggatvhen the economy is weak, and it supports
the previous literature on the existence of thghthto-quality phenomenon.

However, we do not find such a clear pattern fer tbefficients related to these variables in the
DCC-MIDAS-XC model. The reason that the coefficia@itthe macro-finance variables in the
DCC-MIDAS-XC cannot fully reflect the relationshipetween the economic conditions and the
long-term correlation is that the realized corielatitself to a large extent already captures this
effect (the coefficient of this variable is poséiand highly significant in all the cases). Therefo
the coefficients of the macro-finance variableghis model indicate the impact on the long-term
correlation after considering what is already cegdduby the variable realized correlation in the
model.

The best model fit (based on AIC) is obtained i@ thodels with both realized correlation and a
macro-finance variable which is followed by modelgh the realized correlation only. Amacro-
finance variable alone gives the worst fit. Thisiimilar to the ranking of the univariate models fo
the stock and bond volatility. However, the vareblthat influence the long-run stock-bond
correlation differ from those that influence thaderun stock and bond volatility. The inflationeat
the industrial production, the short rate, the diéfspread, the S&P volume, the PMI, and consumer
confidence are all significant variables when cdesd jointly with the lagged realized correlation
for explaining the long-run stock-bond correlati@nly the inflation rate, the default spread, and
the PMI are recurring from the long-run volatilifgr stocks and bonds,. The other important
macro-finance variables for explaining the long-stiock volatility (NAI) and bond volatility (term
spread) and VXO are not significant for the long-atock-bond correlation. The forecasting ability
of the inflation is consistent with llmanen (20@@)o finds that changes in discount rates dominate
the cash flow expectations during periods of higftation, thereby inducing a positive stock-bond
correlation. This is, however, in contrast with Qdoall and Ammer (1993) who report that
variations in expected inflation promote a negativerelation since an increase in inflation is bad
news for bonds and ambiguous news for stocks. Ttteoes also find that variation in interest rates
promotes a positive correlation since the pricebaih stocks and bonds are negatively related to
the discount rate.

The S&P volume is a measure of liquidity. The lartfee S&P volume is, the larger the long-run
stock-bond correlation is. So, high liquidity imgsi large/positive stock-bond correlation. The
usefulness of liquidity in forecasting the long-stock-bond correlation is in line with the findsg
in Baele et al. (2010) who show that liquidity tel variables hold predictive power for the stock-
bond comovement.

InsertFigure 4: DCC-MIDAS-C Long-Run Correlation

Figure 4 shows the long-run component of the cati@h as well as the daily correlation stemming
from the DCC-MIDAS-C model. The long-run componena lot less variable, i.e., smoother than
the total correlation.
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InsertFigure 5: DCC-MIDAS-X Daily Correlation
InsertFigure 6: DCC-MIDAS-XC Daily Correlation

Figures 5 and 6 show that the different specificedj i.e., the DCC-MIDAS-X and the DCC-
MIDAS-XC, provide very similar estimations of thaily correlation. So, in this regard the specific
model choice is of little relevance.

InsertFigure 7: Long-Run Correlation DCC-MIDAS-XC

Figure 7 shows the long-run correlations for theows specifications with only lagged realized
correlation, only a macro-finance variable, and ¢benbination. Similar to the long-run stock and
bond volatility, the long-run stock-bond correlatics smoothest when only using macro-finance
variables and the least smooth when using onlyddggalized correlation. The smoothness falls in-
between for the combination of macro-finance vdesband lagged realized correlation. The
graphical presentation of the estimated long-rurretdations underscores that we get a lot of
innovative and useful information by the new magj@cification that is not otherwise available.

InsertFigure 8: Mean Absolute Errors

Figure 8 shows the mean absolute error (MAE) fadjmting the correlation up to four periods
ahead using various models. The MAE is generadlyeiasing with the forecast horizon. At the one-
quarter horizon the MAE is lowest when only consiug the effect from the realized correlation on
the long-run correlation, but for longer horizome tMAE is improved by considering both the
realized correlation and the macro-finance vargbl€hus, the MAE results emphasize the
usefulness of the new DCC-MIDAS-XC model speciimat Among the macro-finance variables,
S&P volume performs best in forecasting future titifg, both alone and in combination with the

realized correlation.

5.3 Effect of Forecasted M acro-Finance Variables

Table 3 shows the results from estimating the tidees models that rely on both historical
observations and forecasts of four macro-financebkes, the DCC-MIDAS-XCF model.

InsertTable 3: DCC-MIDAS-XCF

Adding the forecasted macro-finance variables imgsanodel performance (lower AIC) compared
to that of the models based only on observed mficamce variables. Not surprisingly, the
specification including all three types of infornaat (the realized correlation, the observed macro-
finance variable, and the forecasted macro-finaac&ble) provides the best fit of all.

The forecasts of the inflation rate are not sigaifit in predicting the long-run correlation witteth
most general model, while all three types of infation have explanatory power for the long-run
correlation when we use other macroeconomic vaglfunemployment, short rate, and term
spread). The effect from the forecasted variablpasitive in all cases. Yet, the effect from the
historical observed unemployment rate turns negatwhen used in combination with the
unemployment forecasts. Thus, in total, the effemin the unemployment rate observations and
forecasts work towards cancelling each other otk $hort rate and term spread have positive
effects from both historical observations and fasts. Thus, for these two variables the effects
upon the long-run correlation are made strongeadning the forecasts data.

InsertFigure 9: Long-Run Correlation DCC-MIDAS-XCF
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Figure 9 shows the long-run correlation for the cHpmations based only on lagged realized
correlation, only macro-finance variables (histaliand forecasts), and the combination. There are
large differences in the estimated long-run coti@fs depending on the model specification. Thus,
the new model specification provides additionabiniation that could otherwise not have been
obtained. So, this once again stresses that themmle| specification is highly relevant.

6. Conclusion

In this paper we scrutinize the long-run stock baadrelation. We make use of the dynamic
conditional correlation model (DCC) combined witlnet mixed-data sampling (MIDAS)
methodology. We provide an extension of the exgisbXCC-MIDAS models by which we allow the
long-run correlation to depend upon the laggedizedlcorrelation itself (C) as well as a macro-
finance variable (X). In addition, extend the DCGEMS-XC model to allow the corresponding
forecasted macro-finance variable to influenceltimgy-run stock-bond correlation. The empirical
findings in this paper convincingly document thefuiness of the new DCC-MIDAS-XC models.

The estimated long-run stock-bond correlation is/\@fferent depending on which variables that

enters into its estimation. When only a macro-foewariable is used, the long-run stock bond
correlation is very smooth, while it is fairly vaile when only the lagged realized correlation is

used. When both the lagged realized correlationaamcro-finance variable is used, the estimated
long-run stock-bond correlation falls in-betweene tlsmooth and variable extremes. This

underscores that it is important to take both #ggéd realized correlation as well as the macro-
finance variable into account when forecasting famg stock-bond correlation.

The inflation rate, the industrial production, ti®ort rate, the default spread, the S&P volume, the
producer confidence, and the consumer confideneeakrsignificant in forecasting the long-run
stock-bond correlation. Moreover, forecasts of somacro-finance variables are helpful in
forecasting the long-run stock-bond correlation.

The effects from the macro-finance variables up@nlong-run stock-bond correlation are such that
the long-run stock-bond correlation tends to bgdawhen the economy is strong. This effect
supports the conjecture of the flight-to-qualitjeet on the long-run correlation component.
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Table 1. Estimation of the time varying variances by using univariate GARCH-MIDAS

The table reports the results of the univariate GARMIDAS model for estimating the time-
varying stocks and bonds. Panel A shows the refrltfie return variance for the stocks and Panel
B gives the estimation results of the bond retufin first row of each panel gives the result @f th
model that only includes the realized volatiliBM) in the MIDAS equation, the second part of the
panel reports the results of the model which ontjudes different macro-finance variables in the
MIDAS equation, and the results of the model witthbRV and the macro-finance variables are
reported in the last part of each panelis the intercept term in the mean equation faurre, «
and B are the parameters of the short term varianceatean 3),Wry and Wy are the estimated
weight parameters of the realized volatility and thacro-finance variables respectivetyjs the
intercept term in the long-run variance equatiorg &y and & are the estimated parameters of the
realized volatility and the macro-finance variablesthe long-run variance (equations 4 and 6),
respectively. The estimations are based on dailg t& returns over the period from 1989 until
2013, and quarterly data f&v and the macro-finance variables from 1986 until20wve use 12
lags in the equation for MIDAS).”, ™ and” indicate significance at the 1%, 5% and 10% levels,
respectively.

Panel A. stocksreturns

H a ﬁ Whgrv Wi m Grv G A| C
RV 0.008™ 0.069"  0.918" 1.037" -3.931"  37.116" §-17982
Inflation 0.008"  0.066"  0.926" 2.069 -3.499” 0398 17973
Industrial Prod.  0.008" 0.068" 0.921" 3.203 -3.565" -0.293" 17974
Unemployment 0.008" 0.068" 0.921" 4.436 -3.575" 0.219" §-17974
Termspread 0.008" 0.092" 0.898" 1.0006" -3.317" -0.999" 17945
Short rate 0.008"  0.067"  0.924" 1.426"  -3.519" 0.612" 17976
Default rate 0.008" 0.066" 0.925" 3.915 -3.506 -0.046 1 -17969
Volume S&P 0.008”"  0.068"  0.922" 1.625°  -3.554" -0.632" 17978
VXO 0.008™ 0.070" 0.917" 1.358" -3.630" 0.996"  -17975
PMI 0.008"  0.069"  0.919" 1.006"  -3.577" -0.852" 17978
cC 0.008™ 0.068™ 0.920” 1.006™ -3.604” -0.941" 17977
NAI 0.008" 0.069™ 0.919" 5.071 -3.604" 0.273" 17976
Inflation 0.008" 0.069"  0.919 1.146" 1.931 -4.072"  51.844" 0483  -17994
Industrial Prod. ~ 0.008"  0.070"  0.918"  86.407 3.362 -3.645"  6.560 0287 17976
Unemployment 0.008" 0.069" 0.919" 1.001" 6.413 -3.61%  3.028 0.198 17975
Termspread 0.008"  0.063" 0925°  1.001"  8.691 -3.664"  3.986 0218 17979
Short rate 0.008™ 0.068" 0.927" 100.871  1.478 -3.593"  5.675 0590  -17978
Default rate 0.008"  0.069"  0.920° 1.000"7  1.021 -3.677  10.908 0.327 -17976
Volume S&P 0.008™ 0.070™ 0.917" 6.668 1.679 -3.7357  16.479 -0.569  -17981
VXO 0.008"  0.069"  0920° 1.000°7  1.808 -3.62T  3.863 0.591 -17976
PMI 0.008™ 0.072™ 0.910” 1.001" 1.130" -4.032" 405447 -1.027" §-17999
cC 0.008™ 0.069°  0.917" 1.000" 1.005"  -3.785°  16.176 -0.796  -17984
NAI 0.008™ 0.073" 0.912" 1.000” 8.645 -3.855"  26.860° -0.182° 117985

Table 1. Estimation of the time varying variances by using univariate GARCH-MIDAS
(continued)

Panel B. Bond returns
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U a B Wry Wy m Orv O AIC
RV 0.001 0.042"  0936"  7.063 -5.787"  349.905" -27684
Inflation 0.001 0.03% 0.952" 2.089 -5.260" -0.234 1-27678
Industrial Prod. ~ 0.001 0.038  0.953" 1.189 -5.256 -0.101 | -27675
Unemployment 0.001 0.03% 0.953" 1.002" -5.263" 0.232 -27678
Term spread 0.001 0.037  0.951" 11137 -5.206" 0.633" 27687
Shortrate 0.001 0.038  0.951" 1.187 -5.270” 0.274 1 -27677
Default rate 0.001 0.047"  0.946” 2.563 -5.048 0029 | -27677
Volume S&P 0.001 0.03% 0.953" 1.0006™ -5.244" 0.018 127676
VX0 0.001 0.039"  0.950” 1.171" -5.284" 0.581" 27678
PMI 0.001 0.038  0.952” 1.172 -5.257 0.274 1 -27676
cc 0.001 0.038  0.953" 2.294 -5.245 0.038 | -27675
NAI 0.001 0.038  0.957” 1.060 -5.277 -0.183 27677
Inflation 0.001 0.042" 0936  7.77¢ 1.724 5740 316.993" -0.093 | -27685
Industrial Prod. ~ 0.001 0.042"  0.936" 7.051" 6.598 -5.816°  371.899" 0.040 | 27684
Unemployment 0.001 0.0406" 0.941" 5.485 1.000” -5.712"  295.283" 0.070 -27684
Termspread 0.001 0.040"  0.937" 11.427 1.291"  -5664" 246.991" 0.454" 127694
Short rate 0.001 0.042" 0935  8.009 1.256 -5.740"  309.064" 0.191 27686
Default rate 0.007 0.042"  0933" 5183 75366 -5.870  403.037" 0.085"  -27691
Volume S&P 0.001 0.042"  0937" 5791 141.405  -5.814 368.820" 0.043 -27675
VXO 0.001 0.042"  0.936" 6.713 1.126° -5.743"  304.206° 0.460 5-27687
PMI 0.001 0.042"  0.936" 7.751 1.501 5,778 343.434" 0.129 1 -27685
cC 0.002 0.042"  0936"  6.441"  6.802 5808  362.098" -0.062 | -27685
NAI 0.001 0.042"  0.936" 7.960" 1.027 -5.747  314.43§" -0.057 1 -27684
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Table 2. Estimation of the time varying stock-bond correlations by usng DCC-MIDAS

The table reports the results of the bivariate D@OAS model for estimating the time-varying
correlation between stock and bond returns. Trst fow of the table gives the result of the DCC-
MIDAS-C model that only includes the realized ctaten (RC) in the MIDAS equation, the
second part of the table reports the results of DC-MIDAS-X model which only includes
different macro-finance variables in the MIDAS etioia, and the last part of the table gives the
results of the model with bofRC and the macro-finance variables, i.e. DCC-MIDAS-X@Gdel.a
andb are the parameters of the short term correlagougtion 13)Wgrc andWy are the estimated
weight parameters of the realized correlation dedmacro-finance variables respectivelyis the
intercept term in the long-run correlation equatiand ékc and & are the estimated parameters of
the realized correlation and the macro-financealdeis in the long-run correlation (equation 15),
respectively. The estimations are based on dadgdstrdized residuals from 1993 until 2013, and
guarterly data foRC and the macro-finance variables from 1989 until2Qwe use 16 lags in the

equation for MIDAS). ™, © and’ indicate significance at the 1%, 5% and 10% levels,
respectively.

a b Whge Wy m Orc Ox §A|C
RC 0.049" 0.929" 3.233 -0.023 1.071T 140632
Inflation 0.037" 0.956" 1.057" 0.068 1.617 140636
Industrial Prod. ~ 0.039™  0.956" 1.000 -0.018 0.454 540654
Unemployment 0.039" 0.956" 1.000" -0.003 -0.441 §40653
Term spread 0.038" 0.959" 160.463  -0.013 0.184 i 40656
Short rate 0.036™ 0.960" 211566  0.291 1.198 540648
Default rate 0.035" 0.962" 73.144 -0.020 0.423 | 40653
Volume S&P 0.0427  0.947" 1.156"  -0.068 15017 40634
VXO 0.036" 0.961" 21.170 -0.022 0.428 | 40654
PMI 0.036™ 0.961" 6.547 0.002 -0.480 40655
cC 0.035" 0.963" 11.961 0.052 -0.839 | 40652
NAI 0.039" 0.955" 1.216 -0.025 0.396 140653
Inflation 0.056" 0.917" 4.480 1.0006™ 0.023 0.855 0.504™ 140620
Industrial Prod. ~ 0.052"  0.920"  4.916 32512 -0.005 1116 -0.079 40628
Unemployment 0.049" 0.929" 3.124 3.295 -0.025 1.050  -0.027 ' 40632
Termspread 0.049"  0.929"  3.607 105.302  -0.021 1.070  0.058 ' 40630
Short rate 0.051" 0.922™ 7.005 14.947 -0.002 1.047  0.132" 40624
Default rate 0.052"  0.919"  7.368 14.975 -0.012 1030 0111 140626
Volume S&P 0.053" 0.914" 12,921  1.317" -0.028 0.690 0.638" 140620
VX0 0.053" 0915 10380  11.339 -0.008 0981  0.152 | 40628
PMI 0.053" 0.917" 8.599" 5.359" -0.002 1.00T -0.173 140628
cc 0.05I"  0.921" 8717 5511 0.003 10685  -0.238 40627
NAI 0.052" 0.923"  4.980 103.644  -0.007 1.107  -0.061 | 40630

19



Table 3. Estimation of the time varying stock-bond correlations by using two sided DCC-
MIDAS with SPF data

The table reports the results of the two-sidedrma@ DCC-MIDAS model for estimating the time-
varying correlation between stock and bond retufing first part of the table reports the results of
the DCC-MIDAS-XF model which includes historicaldaforecast data (SPF) for macro-finance
variables in the MIDAS equation and the second péthe table gives the results of the model
augmented byrC, i.e., DCC-MIDAS-XCF modela and b are the parameters of the short term
correlation equation (equation 13)rc, Wx and Wex are the estimated weight parameters of the
realized correlation, the historical data on themdinance variables and the forecast data orethes
variables respectivelyn is the intercept term in the long-run correlatemuation, andkc, & and

&x are the estimated parameters of the realized latboe, the macro-finance variables, and the
forecast data for the macro-finance variables énltéimg-run correlation (equation 17), respectively.
The estimations are based on daily standardizeduas from 1993 until 2013, and quarterly data
for RC and the macro-finance variabl§§ from 1989 @613 (we use 16 lags for historical data and

3 leads for the SPF data in MIDAS).”, ~ and’ indicate significance at the 1%, 5% and 10%
levels, respectively.

a b Wrc Wy Wex m Brc Bx Brx AlC
Inflation 0.037" 0.956" 1.001" 3.601 0.077 1.319 0.388" 140635
Unemployment 0.033"  0.963" 8.961" 39.013 -0.160 -0.819  1.020" §40647
Short rate 0.036" 0.960" 10.131 3.193 0.248 -0.114 1.143 40650
Termspread 0.028"  0.970 2.405" 161.053  2.687 84.857°  -129.978" 40646
Inflation 0.056" 0.906" 10.736°  1.005" 18.859 0.007 0.872 0542”7 -0.082 140614
Unemployment 0.052"  0.918" 9.103" 6.261 54.105 -0.028 0978  -0.130° o0.171" §40625
Short rate 0.049" 0.927" 2.785 12.456 3.666 0.054 1.067 0.135 0.207 140619
Term spread 0.051"  0.926" 2.781"  1.089 37.848 -0.035 1170 0.219 0.136" 40626
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Figure 1. Correlation between the realized stock-bond correlation and the smoothed macro-

finance variables

The figure shows the wavelet correlation betweenréalized stock-bond correlation and the values
of the macro-finance variables. The macro variahtessmoothed by using a wavelet approach. We
use four different degree of smoothing. Wavelcaptures information within!2and 2 time
intervals, so with wavelet 4 all the variations @hibelong to a higher frequency than two years
(eight quarters) are eliminated. We estimate theetation between the values of the macro
variables at time with the realized stock-bond correlation at tiths, wheres=1,...,4. We use a
random walk model (lagged realised correlation)tlas benchmark for the comparison. The
correlations are based on quarterly data from 10%i82013.
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Figure 2. Long-run variance of stock returns estimated by the univariate GARCH-MIDAS
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bothRV and a macro-finance variable. The estimationdased on daily data for returns over the
period from 1989 until 2013, and quarterly dataRdrand the macro-finance variables from 1986

The figure plots the realized quarterly bond retwariance against the estimated long-run
until 2013 (we use 12 lags in the equation for M)A

Figure 3. Long-run variance of bond returns estimated by the univariate GARCH MIDAS
component of the return variances from the GARCHDRIE model with three different
specifications: the model that includes only thaized volatility RV) in the MIDAS equation, the
model that includes the macro-finance variablehé&MIDAS equation, and finally the model with
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Figure 4. Short term and long-run stock-bond correlation estimated by DCC-MIDAS-C

The figure plots the estimated short term and lamg-components of the stock-bond return
correlation from the DCC-MIDAS-C model. The modatludes the realized correlation in the
MIDAS equation for the long-run correlation. Thetiestions are based on daily standardized
residuals from 1993 until 2013, and quarterly dataRC from 1989 until 2013 (we use 16 lags in
the equation for MIDAS).
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Figure 5. Short term stock-bond correlation estimated by DCC-MIDAS-X models with
macr o-finance variables

The figure plots the estimated short term compowréhe stock-bond return correlation from the
DCC-MIDAS-X model that only includes macro-finaneariables in the MIDAS equation for the
long-run correlation. For comparison we also pi@ tesults from the DCC-MIDAS-C model that
only includes the realized correlatioRQ) in the MIDAS equation. The estimations are based
daily standardized residuals from 1993 until 2043d quarterly data for macro-finance variables
from 1989 until 2013 (we use 16 lags in the equeafitw MIDAS).
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Figure 6. Short term stock-bond correlation estimated by DCC-MIDAS-XC models with
realized correlation and macr o-finance variables

The figure plots the estimated short term compowréhe stock-bond return correlation from the
DCC-MIDAS-XC model that includes both realized edation and macro-finance variables in the
MIDAS equation for the long-run correlation. Forngparison we also plot the results from the
DCC-MIDAS-C model that only includes the realizextrelation RC) in the MIDAS equation. The
estimations are based on daily standardized rdsidiiean 1993 until 2013, and quarterly data for
RC and the macro-finance variables from 1989 untdi2@we use 16 lags in the equation for
MIDAS).
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Figure 7. Long-run stock-bond correlation estimated by DCC-MIDAS models

The figure plots the realized quarterly correlagi@gainst the estimated long-run component of the
stock-bond return correlation from the DCC-MIDAS aeb with three different specifications:
DCC-MIDAS-C, which includes only realized corretati RC) in the Midas equation, DCC-
MIDAS-X, which includes the macro-finance variabiegshe MIDAS equation and DCC-MIDAS-
XC, which includes botRC and a macro-finance variable in the MIDAS equatibme estimations
are based on daily standardized residuals from 1@&82013, and quarterly data f&C and the
macro-finance variables from 1989 until 2013 (we W6 lags in the equation for MIDAS).
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Figure 8. The computed mean absolute errors (MAE) for prediction of the future quarterly
correlations

The figure shows the mean absolute errors for tleeligtion of the future relaized stock-bond
correlation using the estimated long-run correfa@iofrom DCC-MIDAS with different
specifications: DCC-MIDAS-X includes the macro-finta variables and DCC-MIDAS-XC
includes botRC and the macro-finance variables. For comparisomiae plot the results from the
DCC-MIDAS-C model that only includes the realizesrelation RC) in the MIDAS equation. We
compare the estimated correlations with the redlig®ck-bond correlation at timgs, where
s=1,...,4. We use the forecast with a random walk ehdthgged realised correlation) as the
benchmark for the comparison. The correlationsdased on quarterly data from 1993 until 2013.
MAE for predicting stock-bond correlation
DCC-MIDASX
0.6

0.5

04
03
02
0.1 |
0
& /

¢
& & &9

Qz \ 0&& &é& %QQ\’

N 0\\@

MAE for predicting stock-bond correlation
DCC-MIDAS-XC

0.6
0.5
0.4

0.3

0.
0.
0
o
z“‘& ?}& o"\ R %

N

[N

& . 5
\gbﬁ Q@ \ﬁ\ e,&Q &\ o&

¥ N

Figure 9. Long-run stock-bond correlation estimated by DCC-MIDAS-XCF models and SPF
data
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The figure plots the realized quarterly correlagi@gainst the estimated long-run component of the
stock-bond return correlation from the DCC-MIDAS aebwith two different specifications: DCC-
MIDAS-C, which includes only realized correlatio@)(in the Midas equation and DCC-MIDAS-
XF, which includes the observed and forecasted oaficance variables in the MIDAS equation.
The estimations are based on daily standardizeduads from 1993 until 2013, and quarterly data
for realized correlation and the macro-finance atalgs, including both historical and forecast data

(SPF), from 1989 until 2013 (we use 16 lags fotdnisal data and 3 leads for the SPF data in
MIDAS).
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